

1 V December 2013

www.ijraset.com Vol. 1 Issue V, December 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENG INEER ING TECHNOLOGY (I JRASET)

Page 75

Slicing of Software Components Using Object-
Oriented Technique

Arvind Kumar#1, Dr. Surender*2

Research Scholar

Computer Science Engineering Department

JJT University, Jhunjhunu, Rajasthan, India

*Department of Information Technology

HCTM Technical Campus, Kaithal, Haryana, India

Abstract: Component-Based Software Engineering (CBSE) is an approach used to develop a large software system with the as-
sembly of reusable software components according to the client-specific requirement. CBSE is based on reusable software com-
ponent that can be replaced and updated easily. This paper extends the graph less technique proposed by Beszedes for slicing
Object Oriented Programs. The proposed approach computes the dynamic slices of the OOPs especially in case of polymorphism.
The proposed approach generate the defined-used chains of the objects and variables used in the program and then compute the
slice using those defined-used information, then debug the program by detecting the various possible bugs and generating the
suggestion messages which may remove the present bug. A GUI tool has been developed to compute and display the computed
slice. Tool allows the user to browse the program and then generate the results. So using this technique, researcher selects the
optimal components from component repository.

Keywords: Program slicing, Control Flow Graph, d-u chain

INTRODUCTION

The computation of slices of the program is called program slic-
ing. Program slicing is a technique to extract program parts with
respect to some special computation. In this area many research
papers are presented, the idea of program slicing was proposed
by Weiser in 1979 [1]. Program Slicing is to remove the irrele-
vant statements from the program code. Irrelevant statements
are those statements to which the buggy statement is neither data
dependent nor control dependent. Weiser found that the output
of a particular execution of the program depends on the small
portion of the source code and change in the rest of the program
does not affect the output of the program. Weiser use Control

Flow Graph (CFG) as the intermediate representation of the
Program for computing Slices[1].

CFG can only represent the control dependency between the
program statements. Ottenstein et. al. [11]. proposed a new
graphical representation of the program called Program Depen-
dency Graph(PDG) which represented both Control as well as
Data dependency [11], which gave better results than CFG. One
disadvantage of PDG was that it can only be applied on single-
process procedures.

Horwitz introduced the System Dependence Graph (SDG) for
computing Slice of the inter procedure program with procedure
call [3]. Later Horwitz gave the better algorithm to compute

www.ijraset.com Vol. 1 Issue V, December 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENG INEER ING TECHNOLOGY (I JRASET)

Page 76

slices of inter procedure program with procedure call [12]. This
algorithm used SDG for the computation of the slices.

Object oriented programs have different properties like class,
objects, inheritance and polymorphism. These all features
strengthen the use of object oriented programs but at the same
time pose the challenge for slicing. These features cannot be
represented in SDG. Larson and Harrold introduced a new kind
of intermediate graph called as Class Dependence Graph
(CLDG) for each class in an object-oriented program. This in-
termediate representation is able to represent object oriented
features. Later Larson, B.A. Malloy presented OPDG (Object
Oriented Program Dependence Graph) which was the extended
version of the PDG with some more dependency edges and
nodes so that it can represent object oriented features [4]. Since
then many variation of the OPDG has been proposed by many
researchers, Rothermel and Harrold proposed the class depen-
dence graph (CDG) [5]. Larsen and Harrold proposed an exten-
sion of system dependence graph for object oriented software
(ESDG)[2]. Liang and Harrold proposed extensions to ESDG
for the purpose of object-slicing [6]. Harrold and Rothermel
proposed a family of representations for object-oriented soft-
ware: class hierarchy graph (CHG), class call graph (CCG),
class control flow graph (CCFG), and framed graph[7].

Krishnaswamy [13] proposed a different approach to slicing
object-oriented programs. He used another dependence-based
representation called the object oriented program dependency
graph (OPDG) to represent the object-oriented programs. The
OPDG of an object oriented program represents control flow,
data dependencies and control dependencies.

One important variation is proposed by Rajib Mall and Samanta,
called Call Based Object Oriented System Dependence Graph
(COSDG)[8]. This graph represented object oriented features, at
the same time it also represented the structural features of the
program. The graph was used for Object Slicing as well as for
test coverage analysis.

Horwitz again introduced the new kind of slicing called call-
stack sensitive slicing[9]. call stack is used for reducing the size
of slice ,as call stack gives the procedure call which is active at
the time of slicing. This helped in removing those procedure
calls which are of no use in that particular execution of the pro-
gram.

Although lots of graphical representation of the program has
been proposed but generating the graph from program is in itself
a very difficult task and then following dependencies to com-
pute slice makes it more tedious. Arpad Beszedes and Tamas
Gergely [10], proposed a new method to compute slices based
on definition-use(d-u)chains. Since graphical representation of
the program is not required so the method proposed is quite use-
ful for computing slices.

In section 2 some background details are provided. Section 3
presents the proposed approach and algorithm for computation
of slices. Section 4 presents an example to illustrate our ap-
proach in detail, the implementation and results are also pre-
sented in this section. Finally we draws some conclusion in
section 5.

Background Information

When a statement assigns some value to some variable, that
statement is defining that variable. And when it references some
variable, it uses that variable. If some variable is defined by re-
ferencing to some other variable in the same statement, the defi-
nition of that variable is influenced by that use. a statement can
uses and defines several variables, and it may be the case that a
variable is defined by referencing to more than one variable, and
on the other hand it may be that the use of a variable influences
different definitions. For example in the following C language
instruction [10],

Use of variables and influence definition , also the use of
variable influences definition too in the same statement. A
execution path from node to node is called to be definition-
clear with respect to variable , if none of the nodes of the ex-
ecution path contain definition to . The definition of variable
in node reaches another node , if there exists a definition-
clear execution path with respect to variable from to .
When the definition of variable at node reaches a node in
which the same variable is referenced, the definition of in
node and the data-dependent node is called a d-u pair for
and denoted by . The sequence of connected du pairs,
in which each adjacent pair corresponds to a du pair, is referred
to as a du chain.

www.ijraset.com Vol. 1 Issue V, December 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENG INEER ING TECHNOLOGY (I JRASET)

Page 77

Data flow analysis is used to collect information about the flow
of data values across basic blocks. defined-used information is
part of data flow analysis.

- = where is object defined and is
object used, is the line number .

where is the name of the object,
is the class name, is the type of object whether pointer or non

pointer, is the line number

where is the name of class or method
defined in line number .

is the name of the me-
thod , is the class of the in which method is defined , is the
type of the object whether virtual or non virtual s the line
number .

where is the name of the
class, and is the pointer to the next node in (inheritance
chain)}

: it includes the object name and the line number
at which we want to compute Slice.

Proposed Algorithm

Algorithm proposed here uses local definition-use information
for computing slices of object oriented programs. This algorithm
mainly concentrated on the polymorphism case, it first identify
the polymorphic call and then analyse the run time information
of the object to identify the method which is to be inserted in the
slice. In this proposed algorithm we use du-chain for data flow
analysis.

The input to the algorithm are, :a program and Slicing Criteria
where is the name of the object and is the line num-

ber, and output is :slice of the program .

Begin:

check whether the object is Pointer

}

sub class does not have definition of that method

www.ijraset.com Vol. 1 Issue V, December 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENG INEER ING TECHNOLOGY (I JRASET)

Page 78

line number of opening and closing brace of
class

IMPLEMENTATION

The proposed algorithm is implemented in c# in .net framework
3.5 with the help of visual studio. The program is instrumented
to take a program as an input, for every method call, program
records the object on which the method is invoked. For each
object program records the unique identifier representing that
object. The pointer objects have given the different identity to
differentiate them with non pointer objects.

The input program is given below and its computed slice with
the help of Slicing tool is shown in figure 1. C++ language is
used for the input program.

1 #include <iostream>

2 using namespace std;

3 class CPolygon {

4 protected:

5 int width, height;

6 public:

7 void set_values(int a,int b)

8 {

9 width=a;

10 height=b;

11 }

12 virtual int area()

13 {

14 return(0);

15 }

16 };

17 class CRectangle: public CPolygon

18 {

19 public:

20 int area()

21 {

22 int area;

23 area=width*height;

24 return(area);

25 }

26 };

27 class CTriangle: public CPolygon

28 {

29 public:

30 int area()

31 {

32 int area;

33 area=width*height/2;

34 return(area);

35 }

www.ijraset.com Vol. 1 Issue V, December 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENG INEER ING TECHNOLOGY (I JRASET)

Page 79

36 };

37 int main()

38 {

39 CRectangle rect;

40 CTriangle trgl;

41 CPolygon poly;

42 CPolygon *ppoly1;

43 ppoly1=▭

44 CPolygon *ppoly2;

45 ppoly2=&trgl;

46 CPolygon *ppoly3;

47 ppoly3=&poly;

48 ppoly1->set_values(4,5);

49 ppoly2->set_values(4,5);

50 ppoly3->set_values(4,5);

51 ppoly1->area();

52 ppoly2->area();

53 ppoly3->area();

54 return 0;

55 }

Figure 1. Example program and its computed slice

www.ijraset.com Vol. 1 Issue V, December 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENG INEER ING TECHNOLOGY (I JRASET)

Page 80

In fig 1. the slicing criteria entered is <trgl,46>. The computed
slice is executable in itself and preserve the complete behavior
of the object ‘trgl’.

CONCLUSION

The past approaches use various dependence graphs for the in-
termediate representation of the program. These dependence
graphs are very complex to generate. This paper proposed a new
intermediate representation of the programs called d-u chains.
An algorithm for the computation of slices of object oriented
programs is also proposed, this algorithm is based on computing
the dependencies between the statements by using definition-use
information of the program statements i.e. d-u chains. Compu-
ting slice using d-u chains as the intermediate representation of
the program makes it much easier, since the space complexity of
this proposed data structure is much lesser. So using this ap-
proach, researcher can select the optimal component.

REFERENCES

[1] Weiser M.,: Program slicing, IEEE Trans. Software Engi-
neering, 1984, Vol 16: pp 498-509

[2] Larsen L. and M. Jean Harrold.: Slicing object-oriented
software. In Proc. of the 18th International Conference on Soft-
ware Engineering Berlin, Germany, Mar 1996, pp 495–505

[3] Horwitz S., T.Reps, and D.Binkley, :Interprocedural slicing
using dependence graphs, ACM Transaction on Programming
Languages and System Jan 1990, Volume:12, Issue: 1, pp.26-60

[4] Malloy B. A., J. D. McGregor, A. Krishnaswamy, and M.
Medikonda. :An extensible program representation for object-
oriented software. ACM SIGPLAN Notices Dec 1994, vol 29, pp
38–47

[5] Rothermel G. and M. J. Harrold. :Selecting regression tests
for objectoriented software. In Proc. of the International Confe-
rence on Software Maintenance - 1994 Victoria, BC, Canada,
Sep 1994, pp 14–25

[6] Liang D. and M. J. Harrold. :Slicing objects using system
dependence graphs. In Proc. of the IEEE International Confe-
rence of Software Maintenance (ICSM ’98) Bethesda, MD, USA,
Nov 1998, pp 358–367

[7] Harrold M. J. and G. Rothermel. :A coherent family of ana-
lyzable graphical representations for object-oriented software.
Tech. Report OSUCISRC- 11/96-TR60, Department of Comput-
er and Information Science, The Ohio State University, Nov
1996

[8] Najumudheen, E. S. F., R. Mall and D. Samanta, :A depen-
dence representation of coverage testing, Journal of Object
Technology,2010

[9] Horwitz S., B. Libit, and M. Polishchuk, :Better Debugging
via Output Tracing and Callstack-Sensitive Slicing, IEEE
Transactions on Software Engineering, , January/February
2010, VOL. 36, pp 1

[10] Beszedes A., T. Gergely and T. Gyimothy, :Graph-Less
Dynamic Dependence Based Dynamic Slicing Algorithms, In
Proceedings of the Sixth IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM’06),2006

[11] Ottenstein K.J., L.M. Ottenstein :The program dependence
graph in a software development environment, ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-
tical Software Development Environments, April 1984, pp.177-
184

[12] Horwitz S., T.Reps, and D.Binkley, :Interprocedural slic-
ing using dependence graphs, ACM Transaction on Program-
ming Languages and System, , Jan 1990, Volume:12, Issue: 1
pp.26-60

[13] Krishnaswamy A.,: Program slicing An application of pro-
gram dependency graphs. Technical report,Department of Com-
puter Science, Clemson University, August 1994

[14] Duanzhi C., :Program slicing, International Forum on In-
formation Technology and Applications,2010

[15] Prasad D., Mohapatra, R. Mall and R. Kumar, :An over-
view of slicing techniques for object-oriented programs, Infor-
matica 30,2006

