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Abstract: In this paper, primarily, best-first heuristic search with hill-climbing search implementation method has been 
expanded for general m-machine flow-shop scheduling problem, after that, a new pruning function of the branch and bound 
algorithm has been developed to control combinatorial explosion in the permutation schedule. This new pruning function tries to 
admit those partial schedule for advance extension and contemplation to get entire schedule, which give minimum amount of the 
idle times of all machines, and discards those partial schedules via which machines yield more than the minimum sum of the idle 
times. An illustration of numerical example is offered in sustaining of the best-first and new pruning function and algorithm. 
Performance of new heuristic pruning function has been assessed with overall lower bound. 
Keywords: Make span, best-first search, heuristic pruning function, branch and bound etc. 

I. INTRODUCTION 
This is standard n-job and m-machine flow-shop (no-passing condition) scheduling problem by means of the objective function of 
reducing the time required to process all n jobs on all the m machines. This elapsed time is frequently known as make-span of a 
schedule. 
Johnson, [1], one of the initiator, recommended a resolution that solves the case of two machines with optimality, recognized as the 
Johnson-rule. Here permutation sequences are prevailing, i.e. the job sequence is the equivalent for all machines. Additional 
optimization approaches comprises branch and bound [2], [3], elimination rules as in Baker [4], and row generation algorithms as in 
Frieze & Yadegar [5] and Dudek et al. [6]. Since the problems are ``NP-hard" where computational necessities for acquiring an 
optimal solution enhance exponentially as the problem size enhances [7], these techniques are computationally exhaustive for even 
very small size problems. Many methods have been build up to evade the computational complexity needed for attaining optimal 
solutions. Examples consist of transitive rules in Gupta [8], Woo and Yim [9], CDS algorithm in Campbell, Dudek, and Smith [10], 
priority rules in Mac Carthy and Liu [11], and the neighborhood outlawed search in Widmer and Hertz [12]. Though, there is no 
assurance if good schedules are produced. 
James and Gupta[13] given a combinational procedure to resolve the restrained large flow-shop scheduling problems. Yadav and 
Chaudhari[14] executed their combinational procedure via linked list data structure to recover the problem size using Gupta’s[15] 
equation for adopting or discarding partial schedules. Ignall and Schrage[16] recommended branch and bound technique with lower 
bound pruning function for three-machine flow-shop sequencing problem. 
This branch and bound technique has been extensive with best-first heuristic pruning function and minimum sum of idle time 
heuristic pruning function. Bansal, et. al [17] offered perception of global lower bound in which lower bounds are computed on job 
basis and also on machine basis which has been used as an benchmark to verify the optimality of the solution. 

II. SCHEDULING CONDITIONS 
Let X(i,j) indicate the time at which machine j initiates work on job i. And T(i,j) indicate the processing time of job i on machine j. 
Subsequently, 
X(a,m) = Max [ X(a,m-1) + T(a,m-1) ; X(a-1,m) + T(a-1,m) ], …(1) 
Here , X(0,m) = X(a,0) = 0, for all a and m. 
Formulation for the Terminal Point of the Algorithm 
Partial Schedule: Any sequence of less than n jobs. Additionally, if the number of jobs is n then any sequence of n jobs is a complete 
schedule. For instance, if n = 4, then job sequences 2,4,3,1 and 3,1,4,2 are complete schedules where job sequences 1,2; 1,2,3; 2,1; 
2,1,3; 4,1,3 etc. are partial schedules. 
Now, suppose a partial schedule P(which may be null) and a job a that when increased to P, acquiesces the schedule Pa (this 
schedule may be incomplete). For instance, if P = (1,3,4) and a = 2, then the schedule created by increasing job a to P is Pa = 
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(1,3,4,2).In other terms, the sequence progresses to the right and is inferred as "followed by"; such as P followed by a. Let T(Pa,m) 
be the completion time of the partial schedule Pa on machine m. Taking into consideration equation (1) it is simple to expand a 
recursive relation for calculating T(Pa,m). We scrutinize that the m-th operation of the last job of the partial schedule P is on m-th 
machine, which processes the m-th operation of job a. Consequently, equation (1) simplifies as: 

x(a,m) = Max [ T(Pa,m-1) ; T(P,m) ] 
Since, T(Pa,m) = X(a,m) + T(a,m), 
It follows that: 

T(Pa,m) = Max [ T(Pa,m-1) ; T(P,m) ] + T(a,m); m 
= 1,2,3,...m, …(2) 
Where, 
T(0,m) = T(Pa,0) = 0, for all Pa and m. 
Now we can identify the m-machine flow shop scheduling problem as one of minimizing T(Pa,m), where P ranges above all 
possible permutations of n-1 jobs not containing job a, and job a ranges over all probable values from one through n. This 
explanation gives rise to n! possible schedules, each one of them being feasible. As of the factorial nature of the total number of 
feasible schedules, the problem still requires an appropriate method (efficient algorithm - polynomial order complexity) of searching 
an optimal schedule, excluding possibly for some particular cases. 

III. IMPLEMENTING HEURISTIC SEARCH 
The easiest mode to execute heuristic search is through a procedure called hill climbing due to Pearl, in George [18]. Hill-climbing 
strategies enlarge the current state in the search and assess its children. The best child is elected for extra extension; neither its 
siblings nor its parent are maintained. Search stops when it attains a state that is superior to any of its children. Here, in case of job 
scheduling, Search stops while all the jobs have been scheduled one by one. This approach of hill-climbing utilizes partial 
information; consequently probability of getting global optima is limited. Further informative algorithms similar to backtracking 
techniques with enhanced heuristic pruning function may be engaged for global optimal solution. 
In spite of its restrictions, hill-climbing be capable of being used efficiently if the evaluation function is adequately informative to 
evade local maxima and infinite path. Generally, though, heuristic search entails a added flexible algorithm: this is provided by best-
first search, where, with a priority queue, resurgence from local maxima is achievable. The comprehensive perceptions and 
formulation of job scheduling problem as heuristic search have been explained with an example problem. It is helpful to think of 
heuristic algorithms as consisting of two parts: the heuristic measure and an algorithm that uses it to explore the solution state space. 

IV. BEST INTERIM MAKE-SPAN HEURISTIC MEASURE 
If the intention of the scheduling problem is to reduce the completion time of all jobs on all machines, at that time it is expected to 
think of ways of scheduling or sequencing the jobs to reduce the make-span. So the creation of sequence or schedule ought to be 
such that the next job assigned to a machine be supposed to minimize the make-span. As a result, starting from the null partial 
schedule and mainly escalating it by means of all unscheduled jobs one at a time, we get n partial schedules of each one job. 
Calculate make-spans of all partial schedules. We can identify these make-spans as interim make-spans since these schedules are not 
complete schedules of all n jobs. This interim make-span of a partial schedule might be a heuristic measure or criteria for deciding 
which partial schedule can be extended to engender solution state space in the creation process of complete schedule in the heuristic 
search. Evidently, the partial schedule with minimum interim make-span may be established for further expansion and exploration. 
This is a simple standard to clarify the heuristic search method. This heuristic measure will work as a bound function which is 
explained as: originally, create n partial schedules of one job each. Calculate their interim make spans for these partial schedules. 
Determine a partial schedule Pi, such that, the interim make span of Pi (1  i  k, initially k = n) is minimum, then we discard or 
prune all partial schedules other than Pi and accept Pi for additional expansion (branching) with unscheduled jobs, which are not in 
partial schedule Pi, to get complete schedule in the heuristic search, ultimately. 
 
A. Algorithm 
1) Step 1. Begin with null (which contains no job) partial schedule. Expand this null partial schedule by appending all unscheduled 

jobs one by one. Thus, we get n partial schedules each including only one job. 
2) Step 2. Calculate their completion times (interim make-spans). 
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3) Step 3. Evaluate the partial schedules with respect to their interim make-spans. Delete or reject those partial schedules that give 
up interim make-spans more than the minimum interim make-span (See illustration). 

4) Step 4. Expand accepted partial schedule of step 3 by appending all unscheduled jobs for that partial schedule one by one. 
5) Step 5.Recur step (2) through (4) until each partial schedule in step (4) contains n jobs i.e. complete schedule is attained. 
6) Step 6. Calculate the make-spans of complete schedules of step (5). The minimum make-span schedules in step (5) are optimal 

or close to optimal solution. 
 
B. Illustration 
As an instance of the heuristic measure and algorithm just described, let us consider the five-job, three-machine flow shop 
scheduling problem of Table 1, below: 

 Processing Times on various machines  
     
 M-1 M-2 M-3  
     

Job(I) T(I,1) T(I,2) T(I,3)  
     

1 8 5 4  
     

2 10 6 9  
     

3 6 2 8  
     

4 7 3 6  
     

5 11 4 5  
     

Table 1. A Five-Job, Three-Machine Scheduling Problem 

We start with null partial schedule and augment it by all the five unscheduled jobs, thus, we get five partial schedules. Table 2 gives 
their completion times on all the three machines. The completion time on last i.e. on third machine is called as interim make-span. 
In table 2, the best i.e. the minimum interim make-span is 16 for partial schedules P3 = 3 and P4 =4.Therefore, as per the heuristic 
measure and algorithm, select both or any one or first one for convenience, for further expansion and prune or reject all other partial 
schedules. 

  Make-Span on Machines     
              
  M-1   M-2   M-3      
              

Partial 
 

T(P,1) 

  

T(P,2) 

  

T(P,3) 

  

Decision 

  
         

Schedule(P) 
         
             

              
1 8  13  17   Reject  

          
2 10  16  25   Reject  

          
3 6  8  16   Accept  

          
4 7  10  16   Reject*  

          
5 11  15  20   Reject  

              
Table 2. First list of Partial Schedules and their interim make-spans 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 

   Volume 6 Issue I, January 2018- Available at www.ijraset.com 
     

 
2989 ©IJRASET (UGC Approved Journal): All Rights are Reserved 

 

T(P, I) = Make-Span of Partial Schedule P on Machine I. 
T(P, 3) = Interim Make-Span of Partial Schedule P. 
* In case of tie select the first one. 
Augment the accepted partial schedule P3 = 3 with all unscheduled jobs (1, 2, 4 and 5) one by one at a time. We get four partial 
schedules each of two jobs as shown in table 3. Interim Make-Spans of these Partial Schedules along with the decisions have also 
been shown. 

 Make-Span on Machines   
      

Partial 
T(P,1) T(P,2) T(P,3) Decision 

 

Schedule(P) 
 

     
      

3, 1 14 19 23 Reject  
      

3, 2 16 22 31 Reject  
      

3, 4 13 16 22 Accept  
      

3, 5 17 21 26 Reject  
      

Table 3.Second list of Partial Schedules and their interim make-spans 

Now we can evaluate the partial schedules of table 3 regarding their interim make-spans. In table 3, the best interim make-span is 
22 for partial schedule P3 = (3, 4). As a result, we will admit partial schedule P3 for expansion with unscheduled jobs towards 
completion of this partial schedule and discard all other partial schedule as pointed to in the decision column of Table 3. 
By progressing in this manner, we can complete the last column of Table 6. Because, the number of jobs in schedule of table 6 is 5 
i.e. n, we get complete schedule and the make span of this schedule is 57 time unit, which might be optimal or near optimal one. 

 

 Make-Span on Machines   

      

Partial 
T(P,1) T(P,2) T(P,3) Decision 

 

Schedule(P) 
 

     

      

3, 4, 1 21 26 30 Accept  

      

3, 4, 2 23 29 38 Reject  

      

3, 4, 5 24 28 33 Reject  

      
Table 4: Third list of Partial Schedules and their interim make-spans 
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  Make-Span on Machines     
            

Partial 
T(P,1) 

 
T(P,2) T(P,3) 

 
Decision 

 

Schedule(P) 
   

          
            

3, 4, 1, 2 31 37  46  Reject  
            

3, 4, 1, 5 32 36  41  Accept  
            
Table 5: Fourth list of Partial Schedules and their interim make-spans 

 

  
          
   Make-Span on Machines     
            
 Complete  

T(P,1) 
 

T(P,2) 
 
T(P,3) Decision 

  
 

Schedule(P) 
     

           
           
 3, 4, 1, 5, 2  42  48  57 Accept   
            

Table 6.List of Complete Schedule and its make-span 

One can’t be sure about the optimality of the solution obtained with heuristic methods unless until it has been checked with suitable 
yardstick. If the complete schedule of table 6 i.e. (3, 4, 1, 5, 2) is not optimal, after that further cautiously elected heuristic measure 
may yield improved solution as explained in the following section. Furthermore, the choices taken while breaking the ties may also 
influence the solution. 
But, certainly, the search time gets condensed considerably, as, only one branch is explored at each iteration. 

V. ANOTHER HEURISTIC MEASURE 
Now, we solve the above similar problem by means of another heuristic measure i.e. minimum idle time on machines and evaluate 
the solutions attained by applying different heuristic functions and their effects. 

A. Minimum Sum of Idle Time 
If the goal is to reduce the total completion time of all jobs on all machines, at that time it is normal to think of ways of scheduling 
to decrease the idle times of machines. So the creation of sequence or schedule ought to be such that the next job allocated to a 
machine should minimize the idle phase of the machine. As a result, amount of the idle times of all machines for a partial schedule 
might be a heuristic measure or criteria for deciding which partial schedule can be extended to produce solution state space in the 
erection process of complete schedule in the heuristic search. Obviously, the partial schedule with minimum sum of idle times may 
be acknowledged for advance extension and exploration. This is one simpler heuristic criterion other than the traditional best-first 
search used in common heuristic search method. This heuristic measure will work as a bound function which is explained as: 
primarily, generate n partial schedules of one job each. Calculate their make spans and sum of the idle times of all the machines for 
these partial schedules. Decide a partial schedule Pi, such that, the sum of the whole idle times of Pi (1  i  k, initially k = n) is 
minimum, then we discard or prune all partial schedules other than Pi and admit Pi for further expansion (branching) with 
unscheduled jobs, which are not in partial schedule Pi, to get complete schedule in the heuristic search, ultimately. 
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B. Algorithm 
1) Step 1. Begin with null (which contains no job) partial schedule. Expand this null partial schedule by appending all unscheduled 

jobs one by one. Thus, we get n partial schedules each containing only one job. 
2) Step 2. Compute their completion times (make-spans) and sum of total idle times on all machines. 
3) step 3. Evaluate the partial schedules regarding their sum of total idle times. And delete or reject those partial schedules that 

provides sum of total idle times other than the minimum sum of total idle times (See illustration). 
4) Step 4. Expand accepted partial schedules of step 3 by appending all unscheduled jobs for these partial schedules one by one. 
5) Step 5.Recur step (2) through (4) until each partial schedule in step (4) contains n jobs i.e. complete schedule is attained. 
6) Step 6. Calculate the make-spans of complete schedules of step (5). The minimum make-span schedule might be an optimal or 

near optimal solution. 
 

C. Illustration 
As an instance of this new heuristic measure and algorithm just explained, consider the same five-job, three-machine flow shop 
scheduling problem of Table 1. 
We begin with null partial schedule and expand it by all the five unscheduled jobs, accordingly we get five partial schedules. 
Table 7 provides their completion times, idle times on all the three machines and sum of overall idle times of all the machines. In 
table 7, the minimum sum of idle times is 14 for partial schedules P3 = 3. As a result, as per the heuristic measure and algorithm, 
choose this partial schedule for added extension and prune or discard all other partial schedules. 

 
Table 7: First list of Partial Schedules and their sum of idle times 

 
T(P, I) = Completion time of partial schedule P on machine I. 
IT(i) = Idle Time of machine i. 
After expanding the accepted partial schedule P3 = 3 with all unscheduled jobs (1, 2, 4 and 5) one by one at a time, we obtained 
four partial schedules each of two jobs as shown in table 8. Their completion times, idle times on all the three machines and sum 
of overall idle times of all the machines beside with the decisions have also been shown. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 

   Volume 6 Issue I, January 2018- Available at www.ijraset.com 
     

 
2992 ©IJRASET (UGC Approved Journal): All Rights are Reserved 

 

Make-Span and Idle Times  on machines              n 

 Machines 
Table 8: Second list of Partial Schedules and their sum of idle times 

In table 8, the minimum sum of idle times is 19 for partial schedule P3 = (3, 4). Consequently, we will admit partial schedule P3 
for expansion with unscheduled jobs towards completion of this partial schedule and discard all other partial schedule as 
indicated in the decision column of Table 8. 
By progressing in this mode, we will be capable of complete the last column of Table 11. as, the number of jobs in schedules of 
table 6 is 5 i.e. n, we got complete schedules and the minimum make span schedule is (3, 4, 1, 2, 5) with total completion time 
equal to 51 time unit, which might be optimal or near optimal one and acknowledged as our solution. 

 
Make-Span and Idle Times onMachines 

 
    

 M-1  M-2 

  

 M-3 

        

              
                            
                       Sum     
  Partial   T  IT  T  IT  T  IT  of  

Decision 
  

  
Schedu 

  
(P,1 

 
(1 

  
(P,2 

 
(2 

  
(P,3 

 
(3 

  
Idle 

   
              

 
  

  
le (P) 

 
) 

  
) 

 
) 

  
) 

 
) 

  
) 

  
Time 

   
                 
                       s     

  3, 4, 1   21   0   26   16   30   12   28  Accept   
                            

  3, 4, 2  23   0  29   18  38   15  33  Reject   
                            

  3, 4, 5   24   0   28   19   33   14   33  Reject   
                            

Table 9: Third list of Partial Schedules and their sum of idle times 
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    Make-Span and Idle Times on         
         Machines              
                            

    M-1    M-2    M-3          
                            

                      Sum     
 Partial   T  IT  T  IT  T  IT  of  

Decisi 
 

 
Schedu 

  
(P,1 

 
(1 

  
(P,2 

 
(2 

  
(P,3 

 
(3

  
Idle 

  
             

on 
 

 
le (P) 

 
) 

  
) 

 
) 

  
) 

 
) 

  
)
  

Time 
  

                
                      s     
                           

 3, 4, 1,   
31 

  
0 

  
37 

  
21 

  
46 

  
19

  
40 

  
Accept 

  
 

2 
                  

                           
                            

 3, 4, 1,  
32 

  
0 

 
36 

  
22 41 

  
18

 
40 

  
Accept 

 
 

5 
            

                           
                            

Table 10: Fourth list of Partial Schedules and their sum of idle times 
 

    Make-Span and Idle Times on         
         Machines              
                            
                      Sum      
 Partial   T   IT   T   IT   T   IT   of   

Decisi 
  

 
Schedu 

  
(P,1 

  
(1 

  
(P,2 

  
(2 

  
(P,3 

  
(3 

  
Idle 

    
                 

on 
  

 
le (P) 

  
) 

  
) 

  
) 

  
) 

  
) 

  
) 

  
Time 

    
                    
                      s      
                            

 3, 4, 1,  
42 

 
0 

 
46 

 2  
51 

 1  
45 

  
Accept 

 
 

2, 5 
    

6 
  

9 
    

                       
                            

 3, 4, 1,   
42 

  
0 

  
48 

  2   
57 

  2   
53 

  
Reject 

  
 

5, 2 
        

8 
    

5 
      

                         
                            

Table 11: List of Complete Schedules and their Make Spans 
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VI. CONCLUSION 
While computing these results by means of the perception of global lower bound, we originate that the schedule (3, 4, 1, 2, 5) by 
means of entire completion time equal to 51 time unit is an optimal one, as the global lower bound value for this problem comes 
out to be 51. Consequently, we can conclude that the heuristic criterion the minimum sum of idle times of all machines not only 
discovers only one branch at most of the levels, but yields enhanced result or make span too. Therefore, we can observe that 
application of heuristic search on job scheduling optimization problem controls combinatorial explosion by pruning more branches 
at premature stages, which is enviable to save memory and reduce processing time. 
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