Some Weak and Strong Form of Fuzzy Super Closed Set

M.K. Mishra¹, M.Shukla², T.Manivannan³
¹ Professor EGS Nagapatnam
² Asst. Prof Arignar Anna Govt. Arts & Science College Karaikal
³ Asst. Prof EGS Pillay. Arts & Science College Karaikal

Abstract: In the present paper we extend the concept of fuzzy closed sets in fuzzy topology and introduce new class of fuzzy weak and strong form super closed set and its characterization in fuzzy topology.

Key Words: fuzzy super closure, fuzzy super interior, fuzzy super closed, fuzzy super open set, fuzzy continuity, fuzzy super continuity.

Aberrations: Fuzzy semi super open (FSSO), fuzzy semi super closed (FSSC), Fuzzy pre super open (FPSO), fuzzy pre super closed (FPSC), fuzzy α-super open (FaSO), fuzzy α-super closed (FaSC), fuzzy generalized continuous (FG-continuous), fuzzy semi generalized continuous (FGS-continuous), fuzzy generalized semi generalized super neighborhood (FGSGS-nhd), fuzzy generalized semi pre continuous (FGSP-continuous), fuzzy super closed (FSC), fuzzy semi generalized super closed (FSSC), fuzzy semi super closed (FSSO), fuzzy weak super closed (FoSC), fuzzy generalized weak super closed (FGSC) etc..

I. INTRODUCTION

Several generalization of Fuzzy Super open and super closed sets Let X be a nonempty set and I = [0,1]. A fuzzy set on X is a mapping from X to I. The null fuzzy set 0 on X into I which assumes only the values 0 and the whole fuzzy set 1 is a mapping from X to [0,1] which takes the values 1 only. The union (resp. intersection) of family {Aα : α ∈ A} of fuzzy set of X is defined to be the mapping sup Aα (resp. inf Aα). A fuzzy set A of X is contained in a fuzzy set B of X if A(x) ≤ B(x) for each x ∈ X. A fuzzy point xβ in X is a fuzzy set defined by xβ(y) = β for y = x and x(y) = 0 for y ≠ x, β ∈ [0,1] and y ∈ X. A fuzzy point xβ is said to be quasi-coincident with the fuzzy set A denoted by xβA if and only if β + A(x) ≥ 1. A fuzzy set A is quasi coincident with a fuzzy set B is denoted by AβB if and only if there exists a point x ∈ X such that A(x) + B(x) ≥ 1. A ≤ B if and only if A ∩ B. A family τ of fuzzy set of X is called the fuzzy topology on X if 0 and 1 belongs to τ and τ is closed with respect to arbitrary union and finite intersection. The member of τ are called fuzzy open sets and their complement are fuzzy closed sets. For a fuzzy set A of X the closure of A (denoted by cl(A)) is the intersection of all the fuzzy closed super set of A and the interior of A (denoted by int(A)) is the union of all fuzzy open subsets of A.

II. PRELIMINARIES

A. Definition 2.1: A subset A of a fuzzy topological space (X, τ) is called
1) Fuzzy Super closure scl(A) = {x ∈ X : cl(U) ∩ A ≠ ∅}
2) Fuzzy Super interior sint(A) = {x ∈ X : cl(U) ≤ A ≠ ∅}
3) Fuzzy super closed (FSC) if scl(A) ≤ A.
4) Fuzzy super open (FSO) set if I - A is fuzzy super closed sint(A) = A
5) Fuzzy pre super open set (FPSO) if A ≤ int(cl(A)) and fuzzy pre-Super closed (FPSC) set if cl(int(A)) ≤ A.
6) Fuzzy semi super open (FSSO) set if A ≤ cl(int(A)) and fuzzy semi super closed (FSSC) set if int(cl(A)) ≤ A.

B.Definition 2.3: A fuzzy set A of (X, τ) is called:
1) FSSO if A ≤ cl(int(A)) and a FSSC if int(cl(A)) ≤ A.
2) FPSO if A ≤ int(cl(A)) and a FPSC if cl(int(A)) ≤ A.
3) FαSO if A ≤ int(cl(Int(A))) and a FaSC if cl(int(cl(A))) ≤ A.
4) FαSO if A ≤ cl(int(cl(A))) and a FαSC if cl(int(cl(A))) ≤ A.
In this section we study several interesting characterizations of \(\leq H \). Hence A is \(M \).

D. Definition 2.4: A fuzzy set A of \((X, \tau) \) is called:

1) FGSC if \(cl(A) \leq H \), whenever \(A \leq H \) and \(H \) is FSO in \(X \);
2) FGSSC) if \(cl(A) \leq H \), whenever \(A \leq H \) and \(H \) is FSSO in \(X \).
3) FGGSC if \(cl(A) \leq H \), whenever \(A \leq H \) and \(H \) is FSO set in \(X \);
4) \(F \alpha G SC \) if \(\alpha - cl(A) \leq H \), whenever \(A \leq H \) and \(H \) is \(F \alpha SO \) set in \(X \);
5) \(F \alpha G SC \) if \(\alpha - cl(A) \leq H \), whenever \(A \leq H \) and \(H \) is FSO set in \(X \);
6) FGSPSC if \(spcl(A) \leq H \), whenever \(A \leq H \) and \(H \) is FSO set in \(X \);
7) FGPS) if \(pcl(A) \leq H \), whenever \(A \leq H \) and \(H \) is FSO set in \(X \);
8) \(F \alpha SO \) if \(cl(A) \leq H \), whenever \(A \leq H \) and \(H \) is FSSO set in \(X \).

E. Definition 2.5: A fuzzy topological space \((X, \tau) \) is called a

1) Fuzzy \(T_{10} \) space if every FGSC set is FSC.
2) Fuzzy \(T_{n} \) space if every \(F \alpha SO \) set is FSC.
3) Fuzzy \(T_{3} \) space if every FGSPSC set is fuzzy super closed.

F. Definition 2.6: A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be:

1) FG-continuous if \(f^{-1}(V) \) is FSC set in \(X \), for every FSC set \(V \) in \(Y \).
2) FSG-continuous if \(f^{-1}(V) \) is FGSSC in \(X \), for each FSC set \(V \) in \(Y \);
3) FGSP-continuous if \(f^{-1}(V) \) is FGSPSC in \(X \), for every FSC set \(V \) in \(Y \);

G. Definition 2.7: A fuzzy set A of \((X, \tau) \) is called a FGSGSC set if \(cl(A) \leq H \) whenever \(A \leq H \) and \(H \) is FSGSO in \(X \).

H. Lemma 2.1: Every FSC set is FGSGSC.

I. Proof: Let A be FSC set and H be any FSSO set such that \(A \leq H \). Since A is FSC, \(cl(A) = A \leq H \). Hence A is FGSGSC.

J. Lemma 2.2: Every FGSGSC set is FSC.

K. Proof: Let A be any FGSGSC set and H be any FSO set such that \(A \leq H \). Since every FSO set is FSGSO and A is FGSGSC, we have \(cl(A) \leq H \). Hence A is FSC.

L. Lemma 2.3: Every FGSGSC set is \(F \alpha SO \).

M. Proof: Let A be any FGSGSC set and H be any FSSO set such that \(A \leq H \). Since every FSSO set is FSGSO and A is FGSGSC, we have \(cl(A) \leq H \). Hence A is \(F \alpha SO \).

\(\leq H \). Hence A is FGSPSC and

III. CHARACTERIZATION OF FGSGSC SETS AND FGSGSO SETS

In this section we study several interesting characterizations of FGSGSC sets and FGSGSO.

1) Definition 3.1: A fuzzy set A in \((X, \tau) \) is called FGSGS-nhd of a fuzzy point \(x_i \) if there exists a FGSGSO set \(B \) such that \(x_i \in B \leq A \). A FGSGS-nhd, A is said to be FGSGSO-nhd (resp. FGSGSC-nhd) if and only if A is FGSGSO (resp. FGSGSC).

2) Definition 3.2: A fuzzy set A in \((X, \tau) \) is called FGSG-q-nhd of a fuzzy point \(x_i \) (resp. fuzzy set B), if there exists a FGSGSO set \(U \) in \((X, \tau) \) such that \(x_i, U \leq A \) (resp. \(BqU \leq A \)).

3) Theorem 3.1: If A and B are FGSGSC sets in \((X, \tau) \) then \(A \cup B \) is FGSGSC.

Let A and B be two fuzzy FGSGSC sets in \((X, \tau) \) and let H be any FSGSO set such that \(A \leq H \) and \(B \leq H \). Therefore we have \(cl(A) \leq H \) and \(cl(B) \leq H \). Since \(A \leq H \) and \(B \leq H \), we have \(A \cup B \leq H \). Now \(cl(A \cup B) = cl(A) \cup cl(B) \leq H \). Hence \(A \cup B \) is FGSGSC.

4) Theorem 3.2: If A and B are FGSGSO sets in \((X, \tau) \) then \(A \cap B \) is FGSGSO.

a) Proof. Let A and B be two fuzzy FGSGSO sets in \((X, \tau) \). Then \(1 \sim A \) and \(1 \sim B \) are FGSGSC. By above Theorem \(1 \sim A \cap (1 \sim B) \) is FGSGSC. Since \((1 \sim A) \cap (1 \sim B) = 1 \sim (A \cap B) \), Hence \(A \cap B \) is FGSGSC.

E. Theorem 3.3: If a fuzzy set A is FGSGSC in \((X, \tau) \) and \(cl(A) \sim cl(A) = 0 \) then \(cl(A) \sim A \) does not contain any non-zero FGSGSC set in \((X, \tau) \). Let A be FGSGSC in \((X, \tau) \) and \(cl(A) \sim (1 \sim cl(A)) = 0 \). We prove the result by contradiction. Let B be any
FSGSC in \((X,\tau)\) such that \(B \leq \text{Cl}(A) \cap A \cap B = 0\). This gives \(B \leq \text{cl}(A)\) and \(B \leq 1 - A\). We have \(A \leq 1 - B\), which is FSGSO. Since \(A\) is FGSGSC, we have \(\text{cl}(A) \leq 1 - B\). This implies \(B \leq 1 - \text{cl}(A)\). Therefore \(B \leq \text{cl}(A) \cap 1 - \text{cl}(A) = 0\). That is \(B = 0\), which is a contradiction. Hence \(\text{cl}(A) - A\) does not contain any non-zero FSGSC set in \((X,\tau)\).

5) **Theorem 3.4:** If a fuzzy set \(A\) is FGSGSC in \((X,\tau)\) and \(\text{cl}(A) \cap (1 - \text{cl}(A)) = 0\) then \(\text{cl}(A) - A\) does not contain any non-zero FSC set in \((X,\tau)\).

6) **Proof:** It follows from the above theorem and the fact that every FSC set is FSGC.

F. Theorem 3.5: If \(A\) is FGSGSC set in \((X,\tau)\) and \(A \leq B \leq \text{cl}(A)\) then \(B\) is FGSGSC in \((X,\tau)\).

1) **Proof:** Let \(H\) be FSGSO set such that \(B \leq H\). Since \(A \leq B\), we have \(A \leq H\). Since \(A\) is FGSGSC set, \(\text{cl}(A) \leq H\). But \(B \leq \text{cl}(A)\) implies \(\text{cl}(B) \leq \text{cl}(A)\). Therefore \(B\) is FGSGSC.

7) **Theorem 3.6:** If \(A\) is FGSGSO set in \((X,\tau)\) and \(\text{int}(A) \leq B \leq A\), then \(B\) is FGSGSO in \((X,\tau)\).

1) **Proof:** Let \(A\) is FGSGSO set in \((X,\tau)\) and \(\text{int}(A) \leq B \leq A\). Then \(1 - A\) is FGSGC and \(1 - A \leq 1 - \text{cl}(A) \leq \text{cl}(1 - A)\). Then \(1 - B\) is FGSGC. Hence \(B\) is FGSGSO.

REFERENCES

[7.] George J. Klar and Bo Yuan, Fuzzy sets and fuzzy logic theory and applications Prentice Hall of India New Delhi 2003.

[17.] Nanda S. Strongly compact fuzzy topological spaces fuzzy sets and systems 42,(1990),259-262.

