

6 II February 2018

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

 Volume 6 Issue II, February 2018- Available at www.ijraset.com

1129 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Implementation of Big-Data Applications Using
Map Reduce Framework

Ruchika Kataria1, Prof. Garima Silakari Tukra2

1Research Scholar, Sagar Institute of Research & Technology, Indore, M.P, India.
2Assistant Professor, Sagar Institute of Research & Technology, Indore, M.P, India.

Department of Computer Science & Engineering

Abstract: Clustering As a result of the rapid development in cloud computing, it& fundamental to investigate the performance of
extraordinary Hadoop Map Reduce purposes and to realize the performance bottleneck in a cloud cluster that contributes to
higher or diminish performance. It is usually primary to research the underlying hardware in cloud cluster servers to permit the
optimization of program and hardware to achieve the highest performance feasible. Hadoop is founded on Map Reduce, which is
among the most popular programming items for huge knowledge analysis in a parallel computing environment. In this paper, we
reward a particular efficiency analysis, characterization, and evaluation of Hadoop Map Reduce Word Count utility. The main
aim of this paper is to give implements of Hadoop map-reduce programming by giving a hands-on experience in developing
Hadoop based Word-Count and Apriori application. Word count problem using Hadoop Map Reduce framework. The Apriori
Algorithm has been used for finding frequent item set using Map Reduce framework.
Keywords: Performance analysis, cloud computing, Hadoop Word Count, Apriori algorithm.

I. INTRODUCTION
We are residing within the era of large data. In these days a tremendous amount of knowledge is generating everywhere as a result
of advances within the web and verbal exchange applied sciences and the pursuits of men and women using smartphones, social
media, internet of things, sensor contraptions, online offerings and lots of more. In a similar way, in improvements in knowledge
applications and broad distribution of application, a couple of govt and commercial organizations such as Monetary institutions,
healthcare institution, schooling and research division, power sectors, retail sectors, lifestyles sciences and environmental
departments are all producing a enormous amount of information every day. For examples, international data enterprise (IDC) said
that 2.8 ZB (zettabytes) knowledge of universe had been saved in the year of 2012 and this may reach up to forty ZB through 2020
[1]. In a similar fashion Facebook processes round 500 TB (terabytes) knowledge per day [2] and Twitter generates eight TB data
daily [3]. The huge datasets no longer handiest comprise structured form of knowledge but greater than seventy five% of the dataset
includes uncooked, semi-structured and unstructured type of data [4]. This large quantity of information with one of a kind codecs
can be viewed as giant information. The derivation of big knowledge is indistinct and there are a lot of definitions on huge data. For
examples, Matt Aslett outlined massive knowledge as “tremendous data is now virtually universally understood to refer to the
recognition of larger business intelligence through storing, processing, and examining data that was previously ignored because of
problem of normal data management applied sciences” [5]. Recently, the term of giant data has got a brilliant momentum from
governments, industry and research communities. In [6], significant information is outlined as a term that encompasses using tactics
to capture, approach, analyze and visualize potentially significant datasets in a cheap timeframe now not obtainable to usual IT
applied sciences. Hadoop is an industrial scale batch processing distributed computing tool. It has the capability to connect
computers with multiple processor cores with a scale ranging from hundreds to thousands. Vast volumes of data can be efficiently
distributed across clusters of computers using Hadoop.
The Hadoop scale consists of hundreds of gigabytes of data at the least. Hadoop has been built with the capability to manage vast
data sets whose size can easily lie between couple of gigabytes to thousands of petabytes. Hadoop provides its solution in the form
of a Distributed File System which splits the data and stores it in several different machines. This enables parallel processing of the
problem and efficient computation is possible. The design of Hadoop is such that it can efficiently manage vast quantity of data sets
by taking advantage of clustered computing or by connecting hundred of machines with processing power in parallel. Theoretically
speaking, a single, powerful thousand CPU machine would be much more expensive than thousands of machines with individual
CPUs thus making it an easier investment. Hadoop offers a cost effective solution by tying these smaller and cheaper machines
together.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

 Volume 6 Issue II, February 2018- Available at www.ijraset.com

1130 ©IJRASET (UGC Approved Journal): All Rights are Reserved

After the data is loaded into clusters in Hadoop it is distributed to all the nodes. The HDFS then splits the data into sets which allow
management by individual nodes within the cluster. To handle unavailability of data due to failure, each part is also replicated
across the cluster. The data is also re-replicated in response to failure of the system. All these parts of data are easily accessible
through a universal namespace, despite the parts being distributed and replicated on multiple machines.

II. LITERATURE SURVEY
1] Samneet Singh and Yan Liu, “A Cloud Service Architecture for Analyzing Big Monitoring Data”,ISSNll1007-
0214ll05/10llpp55-70 Volume 21, Number 1, February 2016 .In this paper, author proposed a structure that integrates search-
headquartered clusters and semantic media wiki by using relaxation APIs to help the exploration of cloud monitoring data. This
structure advantages from an internet-based Media-Wiki interface and enables a person to outline the entry to monitoring knowledge
and prepare the processing results. The quest-based cluster developed on Solr Cloud permits indexing of significant size of
knowledge, and thus makes the entire architecture compatible to explore and display the ever-gathering data such as the traces
constructed from knowledge centers. The structure additionally involves an extension, which runs spark on Yarn cluster for
deploying effective evaluation ways for gigantic knowledge set. It utilizes the spark’s Map Reduce paradigm to establish the cluster
in the dataset utilizing k-way clustering approach.
[2] JOSEPH A. ISSA, “Performance Evaluation and Estimation Model Using Regression Method for Hadoop Word Count”,
Received November 19, 2015, accepted December 12, 2015, date of publication December 18, 2015, date of current version
December 29, 2015.In this paper, the writer offered a distinct performance analysis and analysis for Hadoop Word Count workload
utilizing different processors similar to Intel’s ATOM D525, Xeon X5690, and AMD’s Bobcat E350. Our analysis suggests that
Hadoop Word Count is compute-sure workload in both map segment and scale down segment. The outcome exhibit that enabling
HT and growing the number of sockets have a high impact on the Hadoop Word Count performance even as reminiscence velocity
and capacity does now not have an impact on efficiency vastly.
[3] Yaxiong Zhao, Jie Wu, and Cong Liu, “Dache: A Data Aware Caching for Big-Data Applications Using the Map Reduce
Framework”,ISSNll10070214ll05/10llpp39-50 Volume 19, Number 1, February 2014 .In this paper, author recommends Dache, a
knowledge-conscious cache framework for big-data functions. In Dache, tasks publish their intermediate outcome to the cache
manager. A project queries the cache supervisor before executing the specific computing work. A novel cache description scheme
and a cache request and reply protocol are designed. We enforce Dache by means of extending Hadoop. Test bed experiment results
show that Dache tremendously improves the completion time of Map Reduce jobs. [4] Zhuoyao Zhang Ludmila Cherkasova,
“Benchmarking Approach for Designing a Map Reduce Performance Model”, ICPE’13, April 21-24, 2013.In this work, author
presents a novel efficiency analysis framework for answering this question. We observe that the execution of every map (lessen)
duties consists of distinctive, good-defined knowledge processing phases. Handiest map and scale back services are customized and
their executions are consumer-outlined for exclusive Map Reduce jobs. The executions of the remaining phases are time-honored
and rely on the amount of information processed by means of the phase and the performance of underlying Hadoop cluster. First, we
design a suite of parameterizable micro benchmarks to measure normal phases and to derive a platform performance model of a
given Hadoop cluster.

III. EXISTING SYSTEM
Based on Amdahl’s law definition we discussed before, the performance of a given processor can be divided into two parts, the part
which increases with the performance improvement and is said to scale is defined as variable a, and the other part which does not
improve due to the performance enhancement and is said to not scale is defined as variable b. The a and b variables can be derived
using the basic definition of Amdahl’s law which can be written in the form of:

where T1 is the measured execution time at a given input size I1, and To be the non-scale execution time. We can write To in terms
of a second measurement T2 at I2:

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

 Volume 6 Issue II, February 2018- Available at www.ijraset.com

1131 ©IJRASET (UGC Approved Journal): All Rights are Reserved

When we substitute Eq(2) for To in Eq(1) we obtain Amdahl's law in terms of two specific measurements without reference to:

The variables a and b can be transformed to the performance instead of the time domain by using P D 1/T. This will give us a and b
variables in terms of performance and input size as shown in Eq(6) and Eq(7).

For two data points, we will have (I1; P1) and (I2; P2), and for n data points, we will have (I1; P1); : : : ; (In; Pn). We expect these
points to satisfy an equation of the form (except for noise):

Because of noise, we cannot expect to end values for a and b that produce equality for each point i. In this case, we resort to the
theory of linear least-squares estimation to obtain best estimates for a and b. In particular, given a and b, we take the error in our
estimate for Pi in terms of Ii to be the difference between the measured and estimated value for Pi:

The best estimates for a and b are those that minimize the sum of the squares of these errors:

The estimates for a and b are those at which the values of the partial derivatives @E=@a and @E=@b are simultaneously zero. By
computing these derivatives explicitly, we obtain equations satis_ed by the best choices for a and b, which is the best functional _t
to the measured data.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

 Volume 6 Issue II, February 2018- Available at www.ijraset.com

1132 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Given these best estimates for a and b in terms of (I1, P1); : : : ; (In, Pn), we have the following best estimate for P in terms of I.

IV. PROBLEM FORMULATION
Hadoop is specially designed for two core concepts: HDFS and Map Reduce. Both are related to distributed computation. Hadoop
architecture is primarily a distributed master slave architecture that consists of a single master and many slaves. The Hadoop
Distributed File System (HDFS) is used for storage and Map Reduce for computational capabilities. The functions of Hadoop in the
architecture are data partitioning and parallel computation of large datasets. Its storage and computational capabilities scale with the
addition of hosts to a Hadoop cluster, and can reach volume sizes in the petabytes on clusters with thousands of hosts [2]. The Map
Reduce master schedules the computational work on the slave nodes and organizes where the computational work will be scheduled.
The HDFS master is responsible for storing the files and partitioning the storage across the slave nodes and keeping track of where
data is located. There is a need to extract useful information from the data and to interpret the data. The traditional Apriori algorithm
is generally used top to bottom approach.Scans the very big database repeatedly to produce LK increase I/O load and reduce
efficiency. Each item in the candidate item sets must scan database one time to decide whether it can be joined to the Lk. So it needs
to scan the transaction database as the same number as the elements of the frequent item set. When it carries on the k-th scanning,
the algorithm does not use the former result. At the same time, the algorithms mentioned above are improvement or extension 846
based on architecture of the existing algorithm, the efficiency has not been much improved. The key of the improved algorithm that
we propose in this work that how to reduce the scan through the results of previous scan. The main aim of this paper is to give
implements of Hadoop map-reduce programming by giving a hands-on experience in developing Hadoop based Word-Count and
Apriori application. Word count problem using Hadoop Map Reduce framework. The Apriori Algorithm has been used for finding
frequent item set using Map Reduce framework.

V. PROPOSED WORK
Word count is a typical example where Hadoop map reduce developers start their hands on with. This sample map reduce is
intended to count the no of occurrences of each word in the provided input files. The word count operation takes place in two stages
a mapper phase and a reducer phase. In mapper phase first the test is tokenized into words then we form a key value pair with these
words where the key being the word itself and value ‘1’. For example consider the sentence “tring tring the phone rings” In map
phase the sentence would be split as words and form the initial key value pair as<tring,1>
<tring,1>
<the,1>
<phone,1>
<rings,1>
In the reduce phase the keys are grouped together and the values for similar keys are added. So here there are only one pair of
similar keys ‘tring’ the values for these keys would be added so the out put key value pairs would be
<tring,2>
<the,1>
<phone,1>
<rings,1>

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

 Volume 6 Issue II, February 2018- Available at www.ijraset.com

1133 ©IJRASET (UGC Approved Journal): All Rights are Reserved

This would give the number of occurrence of each word in the input. Thus reduce forms an aggregation phase for keys. Here is tha
apriori algorithm where map reduce framework has been applied.

Algorithm Mapper()
{
String line = value. To String();
String[] words=line. split(",");
for(String word: words)
{
Text output Key = new Text(word. To Upper Case().trim());

Input: database (D), minimum support (min_sup).
 Output: frequent item sets in D.
 L1= frequent item set (D)
 j=k; /* k is the maximum number of element in a
transaction from the database*/
for k= maxlength to 1
 {
fori=k to 2
 {
for each transaction Ti of order i
 {
if (Ti has repeated)
 {
Ti.count++;
 }
 m=0;
while (i<j-m)
 {
if (Ti is a subset of each transaction Tj-m of order j-
m)
Ti.count++; m++; }
If (Ti.count>=min_sup)
 Rule Ti generated

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

 Volume 6 Issue II, February 2018- Available at www.ijraset.com

1134 ©IJRASET (UGC Approved Journal): All Rights are Reserved

 Int Writable output Value = new Int Writable(1);
 con. write(output Key, output Value);
}
}
Algorithm Reducer()
{
int sum = 0;
 for(Int Writable value : values)
 {
 sum += value. get();
 }
 con. write(word, new Int Writable(sum));

VI. RESULT
The main aim of this paper is to give implements of Hadoop map-reduce programming by giving a hands-on experience in
developing Hadoop based Word-Count and Apriori application. Word count problem using Hadoop Map Reduce framework. The
Apriori Algorithm has been used for finding frequent item set using Map Reduce framework.
We evaluate our proposed system on different parameters, which describe below:

A. Execution Time
B. Memory

Figure 1.2 Result Analysis of Proposed Implementation

VI. CONCLUSION
Map-Reduce have become an important platform for a variety of data processing applications. Word Count Mechanisms in Map-
Reduce frameworks such as Hadoop, suffer from performance degradations in the presence of faults. Word Count Map-Reduce,
proposed in this paper provides an online, on-demand and closed-loop solution to managing these faults. The control loop in word
count mitigates performance penalties through early detection of anomalous conditions on slave nodes. Anomaly detection is
performed through a novel sparse-coding based method that achieves high true positive and true negative rates and can be trained
using only normal class (or anomaly-free) data. The local, decentralized nature of the sparse-coding models ensures minimal
computational overhead and enables usage in both homogeneous and heterogeneous Map-Reduce environments. Map-Reduce have
become an important platform for a variety of data processing applications. Word Count Mechanisms in Map-Reduce frameworks
such as Hadoop, suffer from performance degradations in the presence of faults. Our algorithm provides an online, on-demand and
closed-loop solution to managing these faults. The local, decentralized nature of the sparse-coding models ensures minimal
computational overhead and enables usage in both homogeneous and heterogeneous Map-Reduce environments.

 Parameter
Existing
System

Proposed
System

Execution
Time (ms)

2280 630

Memory
(MB)

130 107

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887

 Volume 6 Issue II, February 2018- Available at www.ijraset.com

1135 ©IJRASET (UGC Approved Journal): All Rights are Reserved

REFERENCES
[1] Samneet Singh and Yan Liu,“A Cloud Service Architecture for Analyzing Big Monitoring Data”,ISSNll1007-0214ll05/10llpp55-70 Volume 21, Number 1,

February 2016
[2] JOSEPH A. ISSA, “Performance Evaluation and Estimation Model Using Regression Method for Hadoop WordCount”, Received November 19, 2015,

accepted December 12, 2015, date of publication December 18, 2015, date of current version December 29, 2015.
[3] Yaxiong Zhao, Jie Wu, and Cong Liu, “Dache: A Data Aware Caching for Big-Data Applications Using the MapReduce

Framework”,ISSNll10070214ll05/10llpp39-50 Volume 19, Number 1, February 2014
[4] Zhuoyao Zhang Ludmila Cherkasova, “Benchmarking Approach for Designing a MapReduce Performance Model”, ICPE’13, April 21-24, 2013
[5] Nikzad Babaii Rizvandi, Albert Y. Zomaya, Ali Javadzadeh Boloori, Javid Taheri1, “On Modeling Dependency between MapReduce Configuration Parameters

and Total Execution Time”, 2012
[6] Nikzad Babaii Rizvandi, Javid Taheri1, Reza Moraveji, Albert Y. Zomaya, “On Modelling and Prediction of Total CPU Usage for Applications in MapReduce

Enviornments”, 2011
[7] A. Baratloo, M. Karaul, Z. Kedem, and P.Wyckoff, ``Charlotte: Meta computing on theWeb,'' in Proc. 9th Int. Conf. Parallel Distrib. Comput. Syst., 1996, pp.

1_13
[8] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. Livny, ``Explicit control in the batch-aware distributed _le system,'' in Proc. 1st

USENIX Symp. Netw. Syst. Design Implement. (NSDI), Mar. 2004, pp. 365_378.
[9] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier,``Cluster-based scalable network services,'' in Proc. 16th ACMSymp. Oper.Syst. Principles,

Saint-Malo, France, 1997, pp. 78_91.
[10] S. Ghemawat, H. Gobioff, and S.-T. Leung, ``The Google _le system,'' in Proc. 19th Symp. Oper. Syst. Principles, New York, NY, USA, 2003, pp. 29_43.

