

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: II Month of publication: February 2018
DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Fuzzy τ*-Generalized Closed Sets in Fuzzy Topological Spaces

M.K. Mishra¹, D. Anandhi², M.Prabhavathy³ ¹Director R&D, ^{2,3}Asst. Prof, E.G.S. Pillay Arts and Science College Nagapattinam

Abstract: In this paper, we introduce a new class of sets called fuzzy τ^* -generalized closed sets and fuzzy τ^* -generalized open sets in fuzzy topological spaces and explore some of their properties. Keywords: fuzzy closed set fuzzy open set, fuzzy τ^* -g-closed set, fuzzy τ^* -g-open set.

INTRODUCTION

Let X be a non-empty set and I= [0,1]. A fuzzy set on X is a mapping from X in to I. The null fuzzy set 0 is the mapping from X in to I which assumes only the value is 0 and whole fuzzy sets 1 is a mapping from X on to I which takes the values 1 only. The union (resp. intersection) of a family { A_{α} : $\alpha \in \Lambda$ } of fuzzy sets of X is defined by to be the mapping sup A_{α} (resp. inf A_{α}). A fuzzy set A of X is contained in a fuzzy set B of X if $A(x) \leq B(x)$ for each $x \in X$. A fuzzy point x_{β} in X is a fuzzy set defined by x_{β} (y) = β for y=x and x(y) = 0 for $y \neq x$, $\beta \in [0,1]$ and $y \in X$. A fuzzy point x_{β} is said to be quasi-coincident with the fuzzy set A denoted by $x_{\beta q}A$ if and only if $\beta + A(x) > 1$. A fuzzy set A is quasi –coincident with a fuzzy set B denoted by A_qB if and only if there exists a point $x \in X$ such that A(x) + B(x) > 1. A $\leq B$ if and only if $](A_qB^c)$. A family τ of fuzzy sets of X is called a fuzzy topology [2] on X if 0,1 belongs to τ and τ is closed with respect to arbitrary union and finite intersection .The members of τ are called fuzzy open sets and their complement are fuzzy closed sets. For any fuzzy set A of X the closure of A (denoted by cl(A)) is the intersection of all the fuzzy closed super sets of A and the interior of A (denoted by int(A))is the union of all fuzzy open subsets of A.

II. PRELIMINARIES

We recall the following definitions:

- A. Definition 2.1: A subset A of a fuzzy topological space (X, τ) is called;
- *1)* Fuzzy Generalized closed (briefly fuzzy g-closed) if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy open in X.

I.

- 2) Fuzzy Semi-generalized closed (briefly fuzzy sg-closed) if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy semiopen in X.
- 3) Fuzzy Generalized semi closed (briefly fuzzy gs-closed) if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy open in X.
- 4) Fuzzy α -closed[8] if cl(int(cl(A))) \subseteq A.
- 5) Fuzzya-generalized closed (briefly fuzzy αg -closed) if $cl\alpha(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy open in X.
- 6) Fuzzy Generalized α -closed (briefly fuzzy g α -closed) if spcl (A) \subseteq G whenever A \subseteq G and G is fuzzy open in X.
- 7) Fuzzy Generalized semi-preclosed (briefly fuzzy gsp-closed) if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy open in X.
- 8) Fuzzy Strongly generalized closed (briefly fuzzy strongly g-closed) if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy g-open in X.
- 9) Fuzzy Preclosed if $cl(int(A)) \subseteq A$.
- 10) Fuzzy Semi-closed if $int(cl(A)) \subseteq A$.
- 11) Fuzzy Semi-preclosed (briefly fuzzy sp-closed) if $int(cl(int(A))) \subseteq A$.

The complements of the above mentioned sets are called their respective fuzzy open sets.

- *B.* Definition 2.2: For the subset A of a fuzzy topological X, the fuzzy generalized closure operator cl*[5] is defined by the intersection of all fuzzy g-closed sets containing A.
- C. Definition 2.3: For the subset A of a fuzzy topological X, the topology τ^* is defined by $\tau^* = \{G : cl^*(G^c) = G^c\}$
- D. Definition 2.4: For the fuzzy subset A of a fuzzy topological X,
- 1) Thefuzzy semi-closure of A (briefly scl(A)) is defined as the intersection of all fuzzy semi-closed sets containing A.
- The fuzzy semi-preclosure of A (briefly fuzzy spcl(A)) is defined as the intersection of all fuzzy semi-preclosed sets containing A.
- 3) The fuzzy α -closure of A (briefly $cl_{\alpha}(A)$) is defined as the intersection of all fuzzy α -closed sets containing A.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887 Volume 6 Issue II, February 2018- Available at www.ijraset.com

III. FUZZY T*-GENERALIZED CLOSED SETS IN FUZZY TOPOLOGICAL SPACES

In this section, we introduce the concept of fuzzy τ^* -generalized closed sets in fuzzy topological spaces.

- A. Definition 3.1.A fuzzy subset A of a fuzzy topological space X is called fuzzy τ^* -generalized closed set (briefly fuzzy τ^* -generalized) if cl*(A) \subseteq G whenever A \subseteq G and G is fuzzy τ^* -open. The complement of fuzzy τ^* -generalized closed set is called the fuzzy τ^* -generalized open set (briefly fuzzy τ^* -g-open)
- *B.* Theorem 3.1. Every fuzzy closed set in X is fuzzy τ^* -g-closed.
- 1) Proof. Let A be a fuzzy closed set. Let $A \subseteq G$. Since A is fuzzy closed, $cl(A) = A \subseteq G$. But $cl^*(A) \subseteq cl(A)$. Thus, we have $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy τ^* -open. Therefore A is fuzzy τ^* -g-closed.
- *C.* Theorem 3.2. Every fuzzy τ^* -closed set in X is fuzzy τ^* -g-closed.
- 1) Proof. Let A be a fuzzy τ^* -closed set. Let A \subseteq G where G is fuzzy τ^* -open. Since A is fuzzy τ^* -closed, $cl^*(A) = A \subseteq G$. Thus, we have $cl^*(A) \subseteq G$ whenever A \subseteq G and G is fuzzy τ^* -open. Therefore A is fuzzy τ^* -g-closed.
- D. Theorem 3.3. Every fuzzy g-closed set in X is a fuzzy τ^* -g-closed set but not conversely.
- 1) Proof :Let A be a fuzzy g-closed set. Assume that $A \subseteq G$, G is fuzzy τ^* -open in X. Then $cl(A) \subseteq G$, since A is fuzzy g-closed. But $cl^*(A) \subseteq cl(A)$. Therefore $cl^*(A) \subseteq G$. Hence A is fuzzy τ^* -g-closed. The converse of the above theorem need not be true.
- 2) Remark 3.1.: The following example shows that fuzzy τ^* -g-closed sets are independent from fuzzy sp-closed set, fuzzy sg-closed set, fuzzy α -closed set, fuzzy preclosed set fuzzy gs-closed set, fuzzy gsp-closed set, fuzzy α -closed set and fuzzy ga-closed set.
- *E.* Theorem 3.4.: For any two fuzzy sets A and B, $cl^*(A \cup B) = cl^*(A) \cup cl^*(B)$
- 1) Proof :Since $A \subseteq A \cup B$, we have $cl^*(A) \subseteq cl^*(A \cup B)$ and since $B \subseteq A \cup B$, we have $cl^*(B) \subseteq cl^*(A \cup B)$. Therefore $cl^*(A) \cup cl^*(B) \subseteq cl^*(A \cup B)$. Also, $cl^*(A)$ and $cl^*(B)$ are the fuzzy closed sets Therefore $cl^*(A) \cup cl^*(B)$ is also a fuzzy closed set. Again, $A \subseteq cl^*(A)$ and $B \subseteq cl^*(B)$ implies $A \cup B \subseteq cl^*(A) \cup cl^*(B)$. Thus, $cl^*(A) \cup cl^*(B)$ is a closed set containing $A \cup B$. Since $cl^*(A \cup B)$ is the fuzzy smallest closed set containing $A \cup B$ we have $cl^*(A \cup B) \subseteq cl^*(A) \cup cl^*(B)$. Thus, $cl^*(A \cup B) = cl^*(A) \cup cl^*(B)$.
- *F.* Theorem 3.5.: Union of two fuzzy τ^* g-closed sets in X is a fuzzy τ^* g-closed set in X.
- 1) Proof :Let A and B be two fuzzy τ^* g-closed sets. Let $A \cup B \subseteq G$, where G is fuzzy τ^* -open. Since A and B are fuzzy τ^* -g-closed sets, $cl^*(A) \cup cl^*(B) \subseteq G$. But $cl^*(A) \cup cl^*(B) = cl^*(A \cup B)$. Therefore $cl^*(A \cup B) \subseteq G$. Hence $A \cup B$ is a fuzzy τ^* -g-closed set.
- *G. Theorem 3.6.*: A subset A of X is fuzzy τ^* -g-closed if and only if $cl^*(A) A$ contains no non-empty fuzzy τ^* -closed set in X.
- 1) Proof: Let A be a fuzzy τ^* -g-closed set. Suppose that F is a nonempty fuzzy τ^* -closed subset of $cl^*(A) A$. Now $F \subseteq cl^*(A) A$. Then $F \subseteq cl^*(A) \cap Ac$, since $cl^*(A) A = cl^*(A) \cap A^c$. Therefore $F \subseteq cl^*(A)$ and $F \subseteq A^c$. Since Fc is a fuzzy τ^* -open set and A is a fuzzy τ^* -g-closed, $cl^*(A) \subseteq F^c$. That is $F \subseteq [cl^*(A)]^c$. Hence $F \subseteq cl^*(A) \cap [cl^*(A)]^c = \phi$. That is $F = \phi$, a contradiction. Thus $cl^*(A) A$ contain no non-empty fuzzy τ^* -closed set in X. Conversely, assume that $cl^*(A) A$ contains no nonempty fuzzy τ^* -closed set. Let $A \subseteq G$, G is fuzzy τ^* -open. Suppose that $cl^*(A)$ is not contained in G, then $cl^*(A) \cap G^c$ is a non-empty fuzzy τ^* -closed set of $cl^*(A) A$ which is a contradiction. Therefore $cl^*(A) \subseteq G$ and hence A is fuzzy τ^* -g-closed.
- 2) Corollary 3.1.A subset A of X is fuzzy τ^* g-closed if and only if $cl^*(A) A$ contain no non-empty fuzzy closed set in X.
- 3) Proof: Easy
- 4) Corollary 3.2: A subset A of X is fuzzy τ^* -g-closed if and only if $cl^*(A) A$ contain no non-empty fuzzy open set in X.
- 5) *Proof:* The proof follows from the Theorem 3.10 and the fact that every open set is fuzzy τ^* -open set in X.
- *H. Theorem 3.7.*If a subset A of X is fuzzy τ^* -g-closed and A \subseteq B \subseteq cl*(A), then B is fuzzy τ^* -g-closed set in X.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor : 6.887 Volume 6 Issue II, February 2018- Available at www.ijraset.com

1) Proof: A be a fuzzy τ^* -g-closed set such that $A \subseteq B \subseteq cl^*(A)$. Let U be a fuzzy τ^* -open set of X such that $B \subseteq U$. Since A is fuzzy τ^* -g-closed, we have $cl^*(A) \subseteq U$. Now $cl^*(A) \subseteq cl^*(B) \subseteq cl^*[cl^*(A)] = cl^*(A) \subseteq U$. That is $cl^*(B) \subseteq U$, U is fuzzy τ^* -open. Therefore B is fuzzy τ^* -g-closed set in X. The converse of the above theorem need not be true.

REFERENCES

- A.S Mashhour., Abd. El-Monsef. M. E. and El-Deeb S.N., On pre continuous mappings and weak pre-continuous mappings, Proc Math, Phys. Soc. Egypt 53(1982), 47–53.
- [2]. B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, Fuzzy Sets and Systems 35(3) (1990), 345–355.
- [3]. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [4]. C.W. Baker on preserving g-super closed sets Kyungpook Math. J. 36(1996), 195-199.
- [5]. G. Balasubramanian and V. Chandrasekar, Totally fuzzy semi continuous functions, Bull. Calcutta Math. Soc. 92(4) (2000), 305–312.
- [6]. K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1) (1981), 14–32.
- [7]. K. M. Abd El-Hakeim, Generalized semi-continuous mappings in fuzzy topological spaces, J. Fuzzy Math. 7(3) (1999), 577-589.
- [8]. L. A. Zadeh, Fuzzy sets Information and Control 8 (1965), 338–353.
- [9]. M.K. Mishra et all on "Fuzzy super continuity" International Review in Fuzzy Mathematics July –December2012.
- [10]. M.K. Mishra M. Shukla M. Fuzzy Regular Generalized Super Closed Set" International Journal of Scientific and Research December issue July December 2012.
- [11]. M.K. Mishra, et all on "Fuzzy super closed set" International Journal International Journal of Mathematics and applied Statistics.
- [12]. N Levine.., generalized super closed sets in topology, Rend. Circ. Mat. Palermo 19(1970), 89-96.
- [13]. N. Nagaveni., Studies on Generalizations of Homeomorphisms in Topological Fuzzy space s, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- [14]. N.Levine., Semi- super open sets and semi-continuity in topological fuzzy space s, Amer. Math. Monthly, 70(1963), 36-41.
- [15]. N.Palaniappan., and Rao. K. C., Regular generalized super closed sets, Kyungpook Math. J. 33(1993), 211–219.
- [16]. P. M. Pu and Y. M. Liu Fuzzy topology I Neighborhood structure of a fuzzy point and More-Smith Convergence. J. Math. Anal. Appl. 76(1980) ,571-594.
- [17]. P. M. Pu, and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76(2) (1980), 571– 599.
- [18]. Park. J. K. and Park. J.H., mildly generalized super closed sets, almost normal and mildly normal fuzzy space s, Chaos, Solutions and Fractals 20(2004), 1103–1111.
- [19]. R. K. Saraf and M. Khanna, On gs-closed sets in fuzzy topology, J. Indian Acad. Math. 25(1),(2003), 133-143.
- [20]. R. K. Saraf, and M. Khanna, Fuzzy generalized semipreclosed sets, J. Tripura Math. Soc.3(2001) 59-68.
- [21]. R. K. Saraf, M. Caldas and S. Mishra, Results via Fg_-closed sets and Fg-closed sets, Pre print.
- [22]. Syed Ali Fathima. S and Mariasingam. M, On fuzzy regular generalized super closed sets in topological fuzzy space s, International journal of mathematical archive-2(11), 2011, 2497 2502.
- [23]. T. H. Yalva, c, Semi-interior and semi closure of a fuzzy set, J. Math. Anal. Appl. 132(2) (1988),356-364.
- [24]. Veera Kumar M.K.R.S., Between g* super closed sets and g-super closed sets, Mem.Fac.Sci.Kochi Univ. Ser .App .Math ., 21 (2000), 1-19.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)