Fuzzy τ^*-Generalized Closed Sets in Fuzzy Topological Spaces

M.K. Mishra1, D. Anandhi2, M. Prabhavathy3

1Director R&D, $^2,^3$Asst. Prof., E.G.S. Pillay Arts and Science College, Nagapattinam

Abstract: In this paper, we introduce a new class of sets called fuzzy τ^*-generalized closed sets and fuzzy τ^*-generalized open sets in fuzzy topological spaces and explore some of their properties.

Keywords: fuzzy closed set, fuzzy open set, fuzzy τ^*-g-closed set, fuzzy τ^*-g-open set.

I. INTRODUCTION

Let X be a non-empty set and $I = [0,1]$. A fuzzy set on X is a mapping from X to I. The null fuzzy set is the mapping from X to I which always takes the values 0 and whole fuzzy sets I is a mapping from X to I which always takes the values 0 and 1. The union (resp. intersection) of a family $\{A_\alpha: \alpha \in \Lambda\}$ of fuzzy sets of X is defined by to be the mapping $\sup A_\alpha$ (resp. inf A_α). A fuzzy set A of X is contained in a fuzzy set B of X if $A(x) \leq B(x)$ for each $x \in X$. A fuzzy point x_β in X is a fuzzy set defined by $x_\beta(y) = \beta$ for $y = x$ and $x(y) = 0$ for $y \neq x$, $\beta \in [0,1]$ and $y \in X$. A fuzzy point x_β is said to be quasi-coincident with the fuzzy set A denoted by $x_\beta A$ if and only if $\beta + A(x) > 1$. A fuzzy set A is quasi-coincident with a fuzzy set B denoted by $A_\alpha B$ if and only if there exists a point $x \in X$ such that $A(x) + B(x) > 1$. A fuzzy set A is a fuzzy set of X if it is in the intersection of all fuzzy open subsets of A.

II. PRELIMINARIES

We recall the following definitions:

A. Definition 2.1: A subset A of a fuzzy topological space (X, τ) is called:

1) Fuzzy Generalized closed (briefly fuzzy g-closed) if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy open in X.

2) Fuzzy Semi-generalized closed (briefly fuzzy sg-closed) if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy semiopen in X.

3) Fuzzy Generalized semi closed (briefly fuzzy gs-closed) if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy open in X.

4) Fuzzy-α closed (briefly fuzzy α-closed) if $cl(int(cl(A))) \subseteq A$.

5) Fuzzy-α-generalized closed (briefly fuzzy α-g-closed) if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy open in X.

6) Fuzzy Generalized α-closed (briefly fuzzy α-g-closed) if $spcl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy open in X.

7) Fuzzy Generalized semi-preclosed (briefly fuzzy gsp-closed) if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy open in X.

8) Fuzzy Strongly generalized closed (briefly fuzzy strongly g-closed) if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy open in X.

9) Fuzzy Preclosed if $cl(int(A)) \subseteq A$.

10) Fuzzy Semi-closed if $int(cl(A)) \subseteq A$.

11) Fuzzy Semi-preclosed (briefly fuzzy sp-closed) if $int(cl(int(A))) \subseteq A$.

The complements of the above mentioned sets are called their respective fuzzy open sets.

B. Definition 2.2: For the subset A of a fuzzy topological X, the fuzzy generalized closure operator $cl^*[5]$ is defined by the intersection of all fuzzy g-closed sets containing A.

C. Definition 2.3: For the subset A of a fuzzy topological X, the topology τ^* is defined by $\tau^* = \{G : cl^*(G) = G\}$.

D. Definition 2.4: For the fuzzy subset A of a fuzzy topological X,

1) The fuzzy semi-closure of A (briefly $scl(A)$) is defined as the intersection of all fuzzy semi-closed sets containing A.

2) The fuzzy semi-preclosure of A (briefly $spcl(A)$) is defined as the intersection of all fuzzy semi-preclosed sets containing A.

3) The fuzzy α-closure of A (briefly $cl_\alpha(A)$) is defined as the intersection of all fuzzy α-closed sets containing A.
III. Fuzzy τ^*-Generalized Closed Sets in Fuzzy Topological Spaces

In this section, we introduce the concept of fuzzy τ^*-generalized closed sets in fuzzy topological spaces.

A. Definition 3.1. A fuzzy subset A of a fuzzy topological space X is called fuzzy τ^*-generalized closed set (briefly fuzzy τ^*-closed) if $\text{cl}^*(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy τ^*-open. The complement of fuzzy τ^*-generalized closed set is called the fuzzy τ^*-generalized open set (briefly fuzzy τ^*-open).

B. Theorem 3.1. Every fuzzy closed set in X is fuzzy τ^*-g-closed.

Proof: Let A be a fuzzy closed set. Let $A \subseteq G$. Since A is fuzzy closed, $\text{cl}(A) = A \subseteq G$. But $\text{cl}^*(A) \subseteq \text{cl}(A)$. Thus, we have $\text{cl}^*(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy τ^*-open. Therefore A is fuzzy τ^*-g-closed.

C. Theorem 3.2. Every fuzzy τ^*-closed set in X is fuzzy τ^*-g-closed.

Proof: Let A be a fuzzy τ^*-closed set. Let $A \subseteq G$ where G is fuzzy τ^*-open. Since A is fuzzy τ^*-closed, $\text{cl}^*(A) = A \subseteq G$. Thus, we have $\text{cl}^*(A) \subseteq G$ whenever $A \subseteq G$ and G is fuzzy τ^*-open. Therefore A is fuzzy τ^*-g-closed.

D. Theorem 3.3. Every fuzzy g-closed set in X is a fuzzy τ^*-g-closed set but not conversely.

Proof: Let A be a fuzzy g-closed set. Assume that $A \subseteq G$, G is fuzzy τ^*-open in X. Then $\text{cl}(A) \subseteq G$, since A is fuzzy g-closed. But $\text{cl}^*(A) \subseteq \text{cl}(A)$. Therefore $\text{cl}^*(A) \subseteq G$. Hence A is fuzzy τ^*-g-closed. The converse of the above theorem need not be true.

2) Remark 3.1.: The following example shows that fuzzy τ^*-g-closed sets are independent from fuzzy sp-closed set, fuzzy sg-closed set, fuzzy α-closed set, fuzzy precloser set fuzzy gs-closed set, fuzzy gsp-closed set, fuzzy ag-closed set and fuzzy ga-closed set.

E. Theorem 3.4.: For any two fuzzy sets A and B, $\text{cl}^*(A \cup B) = \text{cl}^*(A) \cup \text{cl}^*(B)$

Proof: Since $A \subseteq A \cup B$, we have $\text{cl}^*(A) \subseteq \text{cl}^*(A \cup B)$ and since $B \subseteq A \cup B$, we have $\text{cl}^*(B) \subseteq \text{cl}^*(A \cup B)$. Therefore $\text{cl}^*(A) \cup \text{cl}^*(B) \subseteq \text{cl}^*(A \cup B)$. Also, $\text{cl}^*(A)$ and $\text{cl}^*(B)$ are the fuzzy closed sets. Therefore $\text{cl}^*(A) \cup \text{cl}^*(B)$ is also a fuzzy closed set.

Again, $A \subseteq \text{cl}^*(A)$ and $B \subseteq \text{cl}^*(B)$ implies $A \cup B \subseteq \text{cl}^*(A) \cup \text{cl}^*(B)$. Thus, $\text{cl}^*(A) \cup \text{cl}^*(B)$ is a closed set containing $A \cup B$. Since $\text{cl}^*(A \cup B)$ is the fuzzy smallest closed set containing $A \cup B$, we have $\text{cl}^*(A \cup B) \subseteq \text{cl}^*(A) \cup \text{cl}^*(B)$. Thus, $\text{cl}^*(A \cup B) = \text{cl}^*(A) \cup \text{cl}^*(B)$

F. Theorem 3.5.: Union of two fuzzy τ^* g-closed sets in X is a fuzzy τ^*-g-closed set in X.

Proof: Let A and B be two fuzzy τ^* g-closed sets. Let $A \cup B \subseteq G$, where G is fuzzy τ^*-open. Since A and B are fuzzy τ^*-g-closed sets, $\text{cl}^*(A) \cup \text{cl}^*(B) \subseteq G$. But $\text{cl}^*(A) \cup \text{cl}^*(B) = \text{cl}^*(A \cup B)$. Therefore $\text{cl}^*(A \cup B) \subseteq G$. Hence $A \cup B$ is a fuzzy τ^*-g-closed set.

G. Theorem 3.6.: A subset A of X is fuzzy τ^*-g-closed if and only if $\text{cl}^*(A) = A$ contains non-empty fuzzy τ^*-closed set in X.

Proof: Let A be a fuzzy τ^*-g-closed set. Suppose that F is a nonempty fuzzy τ^*-closed subset of $\text{cl}^*(A) = A$. Now $F \subseteq \text{cl}^*(A) = A$. Then $F \subseteq \text{cl}^*(A) \cap A^c$, since $\text{cl}^*(A) = A = \text{cl}^*(A) \cap A^c$. Therefore $F \subseteq \text{cl}^*(A)$ and $F \subseteq A^c$. Since F is a fuzzy τ^*-open set and A is a fuzzy τ^*-g-closed, $\text{cl}^*(A) \subseteq F$. That is $F \subseteq [\text{cl}^*(A)]^c$. Hence $F \subseteq \text{cl}^*(A) \cap [\text{cl}^*(A)]^c = \emptyset$. That is $F = \emptyset$, a contradiction. Thus $\text{cl}^*(A) = A$ contains no non-empty fuzzy τ^*-closed set in X. Conversely, assume that $\text{cl}^*(A) = A$ contains no nonempty fuzzy τ^*-closed set in X. Conversely, assume that $\text{cl}^*(A) = A$ contains no non-empty fuzzy τ^*-closed set in X. Conversely, assume that $\text{cl}^*(A) = A$ contains no nonempty fuzzy τ^*-closed set in X. Conversely, assume that $\text{cl}^*(A) = A$ contains no non-empty fuzzy τ^*-closed set in X. Conversely, assume that $\text{cl}^*(A) = A$ contains no nonempty fuzzy τ^*-closed set in X.

2) Corollary 3.1.: A subset A of X is fuzzy τ^*-g-closed if and only if $\text{cl}^*(A) = A$ contains no non-empty fuzzy closed set in X.

Proof: Easy

4) Corollary 3.2.: A subset A of X is fuzzy τ^*-g-closed if and only if $\text{cl}^*(A) = A$ contains no non-empty fuzzy open set in X.

5) Proof: The proof follows from the Theorem 3.10 and the fact that every open set is fuzzy τ^*-open set in X.

H. Theorem 3.7.: If a subset A of X is fuzzy τ^*-g-closed and $A \subseteq B \subseteq \text{cl}^*(A)$, then B is fuzzy τ^*-g-closed set in X.
Proof: A be a fuzzy τ^*_g-closed set such that $A \subseteq B \subseteq cl^*(A)$. Let U be a fuzzy τ^*-open set of X such that $B \subseteq U$. Since A is fuzzy τ^*_g-closed, we have $cl^*(A) \subseteq U$. Now $cl^*(A) \subseteq cl^*(B) \subseteq cl^*[cl^*(A)] = cl^*(A) \subseteq U$. That is $cl^*(B) \subseteq U$, U is fuzzy τ^*-open. Therefore B is fuzzy τ^*_g-closed set in X. The converse of the above theorem need not be true.

REFERENCES

[21]. R. K. Saraf, M. Caldas and S. Mishra, Results via F_g-closed sets and F_g-closed sets, Pre print.