Properties of Dominator of an M-Semigroup

L. Lakshmanan
Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore-641 004

Abstract: In this paper we discuss few properties of a collection of a special type of element of an M-semigroup, namely dominator. In an M-semigroup a dominator may be empty or properly contained in it or equal to the semigroup itself.

Keywords: M-semigroup, dominator, idempotent elements, Rectangular Band.

I. INTRODUCTION
In this paper we find a position of a dominator D in an M-semigroup M. We also find a necessary and sufficient condition for the existence of the dominator, a necessary and sufficient condition for a dominator D = M. Further, we decompose the dominator D, in which case decomposed part is a semi-inflation of the dominator. We also discuss some properties of dominator of an M-semigroup.

II. PRELIMINARIES
1) A subset S’ of a semigroup S is said to be a sub semi group of S if S’ is a semigroup with the same binary operation of S.
2) A semigroup S is said to be right(left) singular if for all x, y in S, xy = y (xy = x) such a semigroup is also called a right(left) zero semigroup
3) Let X and Y be any two nonempty sets. Then the system (S = X x Y; *) where (x, y) * (x’, y’) = (x, y’); For all x, x’ in X and y, y’ in y is a band. It is called a rectangular band on X x Y (3)
4) A decomposition of a semigroup S is meant a partition of S into union of disjoint subsemigroups S_i, where i ∈ A, an index set.

A decomposition as above is sometimes denoted by ∪_{i ∈ A} S_i ; it is also said that S is decomposed over A

5) Let S = ∪_{i ∈ A} S_i be a decomposition of a semigroup S into subsemigroups S_i over an index A. If for each (i, j) in AxA there exists an element k of A such that S_i S_j ⊆ S_k then A becomes thereby a band. It is then said that S is the union of the band A of semigroups S_i (i ∈ A); sometimes it is also said that “ S is a band A of semigroups S_i, i ∈ A’

6) If a semigroup S is the union of a band A of semigroups S_i (i ∈ A) then A is the homomorphic image of S under the homomorphism,

f : S → A, xf = i for x in S_i (i ∈ A) and the semigroups S_i (i ∈ A) are the congruence classes of S induced by the homomorphism f.

7) If f : S → A is a homomorphism of a semigroup S onto a band A then S is the union of the band A of semigroups

S_i = (i) f^{-1}, i ∈ A

8) If A is band of type ζ, S is a band A of semigroups S_i (i ∈ A), and each semigroup S_i (i ∈ A) is a semigroup of type ζ, then S is called as a ζ-band A of ζ-semigroup.

The concept that is being defined now is due to Clifford and Preston (1). Let B be a semigroup. With each i of B, associate a set G_i consisting i (i in B) which are mutually disjoint. Let G = ∪_{i ∈ B} G_i (i in B) and let the product in B be extended to a product in G by defining xy = ij if x is in Gi and y in Gj (i, j in B). Then G is a semigroup which is called an Inflation of B. The following result is also due to the above authors:

9) The definition of inflation as given below is due to Tamura (8).

Let B be a given semigroup. Let S be any semigroup. Then S is an inflation of B if and only if, S contains B as a semigroup, B contains a homomorphic image of S.
10) An element d of a semigroup S is called a dominator element of S if $dyd = d$ for all y in S. By D, the dominator of S, is meant the set of all dominator elements of S.

III. DOMINATOR OF AN M-SEMIGROUP

A. Definition
An element x of a semigroup S is said to be a dominator of S if and only if $xyx = x$ for all $y \in S$ [2]. The set D of all dominators of S is called the dominator of S denoted by D. The dominator of a semigroup may be empty.

1) Examples: The following are examples of M-semigroups in which the dominator $D = \phi$.

(i)

<table>
<thead>
<tr>
<th>e</th>
<th>f</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
<td>f</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>e</td>
</tr>
</tbody>
</table>

(ii)

<table>
<thead>
<tr>
<th>e</th>
<th>f</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
</tbody>
</table>

The following are two examples of M-semigroups which contains a proper dominator D.

(i)

<table>
<thead>
<tr>
<th>e</th>
<th>f</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>f</td>
<td>a</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
<td>f</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

Here $D = \{a, b\}$.

(ii)

<table>
<thead>
<tr>
<th>e</th>
<th>f</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>
Here $D = \{a, b\}$.

Examples of M-semigroups in which the dominator is itself is a right zero semigroup.

B. Lemma: A dominator $D \neq \emptyset$ of an M-semigroup $M \cong R \times S$ has the following properties:

(i) $D \cap R = \emptyset$ or $D = R = M$

(ii) $D \cap Me \cong D \cap Mf; \quad e, f \in R$

(iii) $D = \bigcup(D \cap Me)$.

Proof: (i) If $D \cap R \neq \emptyset$, let e belongs to $D \cap R$. For any x belongs to M, $exe = xe$.

But, $exe = e$ since $e \in D$.

Therefore $xe = e$, for all x belongs to M.

Therefore for any a belongs to M, $ea = xea$.

That is, $a = xa$, for all x belongs to M.

That is, every element of M is a right zero element and hence M is a right zero semigroup [2.2] which is a rectangular band.

Therefore $M = R = D$. i.e., $R \cap D = \emptyset$ or $R = M = D$.

(ii) Follows from for any ideal I of an M-semigroup $M I \cap Me \cong I \cap Mf ; \quad e, f \in R$. [4]

A semigroup S contains a dominator if and only if it contains an ideal I which is a rectangular band. Then I is the dominator of S [2].

Each $I \cap Me, e \in R$ is a left ideal of I [4].

C. Lemma

Every ideal I of an M-semigroup $M \cong R \times S$ is a disjoint union of subsemigroup $I \cap Me, e \in R$. That is,

$I = \bigcup(I \cap Me).$ [4]

D. Lemma

A semigroup S contains a dominator if and only if it contains an ideal I which is a rectangular band. Then I is the dominator of S [1]. Follows from 3.3

The following lemmas gives the conditions for the existence of the dominator in an M-semigroup.

E. Lemma:

In an M-semigroup $M \cong R \times S$, if the dominator D exists then $D \subseteq E \setminus R$ where E is the set of idempotents of M.

Proof: Since D is a rectangular band ideal,

$D \subseteq E$ being a rectangular band and $D \cap R = \emptyset$ being an ideal.

If $R = E$ and D exists, then $D \cap E = \emptyset$ and $D \subseteq E$ implies $D = \emptyset$.

©IJRASET (UGC Approved Journal): All Rights are Reserved
F. Lemma
In a left cancellative M-semigroup $M \cong R \times S$, $D = \emptyset$ or $D = M$.

1) Proof: If M is a left cancellative then every idempotent of M is a left identity. That is, $E = R$.

Therefore $D \subseteq E = R$.

From 3.2(i), $D = \emptyset$ or $D = M = R$.

G. Lemma
In an M-semigroup $M \cong R \times S$, if the dominator D of M is equal to M then M is left cancellative.

1) Proof: $D = M$ implies $D \cap R \neq \emptyset$ and $D \neq \emptyset$ implies $D = R$ by 4.8(i)

implies $D = M = R$.

That is $xyx = x = x^2$ for all x, y belongs to $R = M$.

That is, if $xy = xz$, then $y = z$ since x belongs to R.

Hence M is left cancellative, and hence the lemma. From 3.6 and 3.7 we have:

H. Theorem
If an M-semigroup $M \cong R \times S$ has a nonempty dominator D, then $D = M$ if and only if M is left cancellative.

I. Lemma
In an M-semigroup $M \cong R \times S$ if any one of the left identities e of R is primitive then $D \neq M$ implies $D = \emptyset$.

1) Proof: Let a particular $e \in R$ be primitive. For any idempotent g of Me, $ge = g$ and $eg = g$.

Therefore, $ge = eg = g$.

That is, $e = g$, since e is primitive.

Hence, e is the only idempotent in Me.

Let $D \neq M$, if $D \neq \emptyset$, D being the kernel of M, D intersects all Me, $e \in R$ and $D \cap R = \emptyset$. This implies, there are idempotent elements other than e in Me, for all e belongs to R. This contradicts the property that e is primitive.

Hence the lemma.

J. Theorem
An M-semigroup $M \cong R \times S$ contains a dominator D, if and only if S contains a rectangular band ideal.

1) Proof: Let S contains a rectangular band ideal De. That is $Me, e \in R$ contains a rectangular band ideal $De, e \in R$. Consider

$$D = \bigcup_{e \in R} De.$$

Since.

For any x belongs to De, a $Me \cong Mf, De \cong Df \ (e, f \in R)$ and belongs to Df.

©IJRASET (UGC Approved Journal): All Rights are Reserved
\[ax = axx = (ax)x = (\text{element of } Me) \times e \in Df. \]
\[xa = xaa \in Df. \]
\[xax = xaxx = x(ax)x = x. \]

Therefore \(D \) is a rectangular band. For any \(xe \) belongs to \(De \), and \(af \) belongs to \(Mf, e, f \in R \),

\[xe \cdot af = xaf = xf \cdot af \in Df, \quad \text{since } xf \in Df. \]
\[af \cdot xe = axe \in De. \]

That is \(D \) is a rectangular band ideal and hence \(D \) is the dominator.

Conversely, let \(M \) contain a dominator \(D \). \(D \) is a rectangular band ideal of \(M \). That is,

\[D = \bigcup (D \cap Me), \text{ for a fixed } e \in D \cap Me \subseteq Me. \]
\[e \in R \]

Since \(D \) is an ideal of \(M \), \(D \cap Me \) is an ideal of \(Me \).

Let \(xe, ye \) belong to \(D \cap Me \).

Then \(xe \cdot xe = xe \), since \(xe \) belongs to \(D \).

\[xe \cdot ye \cdot xe = xe, \quad \text{since } xe, ye \text{ belongs to } D. \]

Therefore \(D \cap Me \) is a rectangular band for all \(e \in R \).

Since \(S \cong Me \), \(S \) contains a rectangular band ideal.

Since the dominator of an \(M \)-semigroup is an ideal, we have the following:

IV. CONCLUSION

This paper discussed the “Properties of Domination of an \(M \) semi group”.

REFERENCES

