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I. INTRODUCTION 
The concept of a fuzzy set is initiated by Zadeh[6]. The notion of fuzzy metric space is introduced by Kramosil and Michalek[3]. 
George and Veeramani[2] modified the above notion to get a Haussdorff topology on this space. Sintauravant and Kumam[5] 
coined the notion "common limit in the range"(CLR)-property and obtained common fixed point for a pair of self mappings. 
Chauhan along with the above two authors[1] defined the generalized notion "joint common limit in the ranges"(JCLR)-property 
and established common fixed point results for two pairs of self mappings. Recently, Saurabh Manro & Calogero Vetro [4] proved 
existence theorems for four self mappings using the above properties. In this paper, we extend and generalize the main results of 
the above authors. We get their results as corollaries of our theorems.  

II. PRELIMINARIES AND BASIC RESULTS 
We hereunder, give the necessary definitions and results needed for a clear understanding of our findings. 
 
A. Definition 2.1 
 ([2]) A mapping : [0, 1] x[0, 1]  [0, 1] is called a triangular norm (or t-norm) if and only if 
1) *(0, 0) = 0 and *(a, 1) = a for all a  [0, 1], 
2) * (a, b) =  * (b, a), for all a, b   [0, 1], 
3) * (a, b)   *(c, d) whenever one of a, b   c and the other is   d, 
4) *(*(a, b), c) =  *(a, *(b, c)) for all a, b, c   [0, 1]. If * is continuous then we say that *is a continuous t-norm. 
 
B. Definition 2.2 
 ([2]) An ordered triple (X, M, *) is said to be a fuzzy metric space if and only if X is a non-empty set, * is a continuous 
triangular norm and M is a fuzzy set on X2x(0, 1) satisfying the following: for any x, y, z   X and t, s > 0, 
1) M(x, y, t) > 0, 
2) M(x, y, t) = 1 if and only if x = y, 
3) M(x, y, t) = M(y, x, t), 
4) M(x, y, �) : (0, 1)   [0, 1] is continuous and 

5) M(x, z, t + s)   M(x, y, t) * M(y, z, s). 
 
C. Definition 2.3 
([2]) (X, M, *) is a fuzzy metric space. M is said to be continuous on X2x(0, 1) if and only if lim ( , , )n n nn

M x y t


exists 

and ( , , )M x y t  whenever {( , , )}n n nx y t  is a sequence in X2x(0, 1) converging to a point (x, y, t) of X2x(0, 1), 
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i.e, lim ( , , ) lim ( , , ) 1n nn n
M x x t M y y t

 
   and lim ( , , ) ( , , ).nn

M x y t M x y t


  

 
D. Definition 2.4 
 Self mappings f and g of a Fuzzy metric space (X, M, *) are said to be weakly compatible if and only if for any t > 0, 
M(fx, gx, t) = 1 for some xX implies M(fgx, gfx, t) = 1, i.e, fx = gx for some xX implies fgx = gfx. 
 
E. Definition 2.5 
([5]) Let (X, M, *) be a fuzzy metric space, where * denotes a continuous t-norm and f, g, h, k be self mappings on X. The pairs {f, 

g} and {h, k} are said to satisfy the "common limit in the range of g (CLRg ) property" if and only if there exist sequences  nx and 

 ny  in X such that for some x  X and for all t>0, 

lim ( , , ) lim ( , , ) lim ( , , ) lim ( , , ) 1n n n nn n n n
M fx gx t M gx gx t M hy gx t M ky gx t

   
    . 

 
F. Definition 2.6 
 ([1]) Let (X, M, *) be a fuzzy metric space, where * denotes a continuous t-norm and f, g, h, k be self mappings on X. The pairs {f, 
g} and {h, k} are said to satisfy the "joint common limit in the ranges of g and k (JCLRgk ) property" if and only if there exist 

sequences  nx and  ny  in X such that for some x  X, gx=kx and for all t>0,  

lim ( , , ) lim ( , , ) lim ( , , ) lim ( , , ) 1n n n nn n n n
M fx gx t M gx gx t M hy gx t M ky gx t

   
    . 

 
G. Result 2.7 
 ([2]) (X, M, *) is a fuzzy metric space. Then M(x, y, �) is monotonic increasing for all x, yX. 
 
H. Result 2.8 
([2]) (X, M, *) is a fuzzy metric space. If there is a  (0, 1) such that M(x, y,  t)   M(x, y, t) for all x, yX and t > 0 then y = 
x. 
Hereunder,  stands for the class of all functions  : [0, 1]   [0, 1] satisfying the following properties:   is 

continuous and monotone increasing on [0, 1],  (t) > t, for all t(0, 1). 
We now give the main results of Saurabh Manro et.al[4]. 
 
I. Result 2.9 
Let A, B, S and T be self mappings of a fuzzy metric space (X, M, *) satisfying the following conditions: 
A(X)  T (X), 

for all x, y X and t > 0 and 0 < M(Ax, By, t) < 1, there exists a   such that  

M(Ax, By, t) >   (min{M(Sx, T y, t), M(Ax, Sx, t), M(By, T y, t),   
M(By,Sx,t), M(Ax, T y, t)}), 
the pairs {A, S} and {B, T} share the CLRS-property, 
the pairs {A, S} and {B, T} are weakly compatible mappings. 
Then A, B, S and T have a unique common fixed point in X. 
 
J. Result 2.10  
Let A, B, S and T be self mappings of a fuzzy metric space (X, M, *) satisfying the following conditions: 
for all x, y X and t > 0 and 0 < M(Ax, By, t) < 1, there exists a   such that  

M(Ax, By, t) >   (min{M(Sx, T y, t), M(Ax, Sx, t), M(By, T y, t),   M(By,Sx,t), M(Ax, T y, t)}),  
the pairs {A, S} and {B, T} share the JCLRST-property, 
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the pairs {A, S} and {B, T} are weakly compatible mappings. 
Then A, B, S and T have a unique common fixed point in X. 

III. MAIN RESULTS 
The following theorems are generalization of the main results of Saurabh Manro et. al[4]. We get their results as 
corollaries of our theorems. 

A. Theorem 3.1 
Let A, B, H, K, S and T be self mappings of a fuzzy metric space (X, M, *) satisfying the following conditions: 
AH(X)   T (X), 
for all x, yX and t > 0 and 0 < M(AHx, BKy, t) < 1, there exists a  such that 

M(AHx, BKy, t) >  (min{M(Sx, Ty, t), M(AHx, Sx, t), M(BKy, Ty, t),  
                                                                               M(BKy, Sx, t), M(AHx, Ty, t)}), 
the pairs {AH, S} and {BK, T} share the CLRS-property, 
the pairs {AH, S} and {BK, T}are weakly compatible mappings, 
AH = HAand either AS = SA or HS = SH, 
BK = KB and either TB = BT or TK = KT . 
Then A, B, H, K, S and T have a unique common fixed point in X. 
1) Proof: Since the pairs {AH, S}and {BK, T}share the common limit in the range of S property, there exist sequences 

{xn} and {yn} in X and a uX such that  
lim lim lim lim .n n n nn n n n

AHx Sx BKy Ty Su
   

     

First, we assert that AHu = Su or equivalently, M(AHu, Su, t) = 1 for all t > 0. Suppose not; so 0 < M(AHu, Su, t) < 1, 
for all t > 0.  
Then by taking x = u and y = yn in (ii), we get that 
M(Ahu, BKyn, t) >  (min{M(Su, T yn, t), M(AHu, Su, t), M(BKyn, T yn, t), 
                                                                    M(BKyn, Su, t), M(AHu, T yn, t)}). 
As, n  ,  we get that 
M(AHu, Su, t) > (min{M(Su, Su, t), M(AHu, Su, t), M(Su, Su, t),  
                                                             M(Su,  Su, t), M(Ahu, Su, t)}) 
                       =  (min{1, M(AHu, Su, t), 1, 1, M(AHu, Su, t)}) 

                       > (min{M(AHu, Su, t), M(AHu, Su, t), M(AHu, Su, t),  
                                       M(AHu, Su, t), M(AHu, Su, t)}) 
                       =   (M(AHu, Su, t)). 

Thus M(AHu, Su, t) > (M(AHu, Su, t)) > M(AHu, Su, t), which is a contradiction. Therefore, AHu = Su. 
Since AH(X) T (X), there exists vX such that AHu = Tv. 
Secondly, we assert that BKv = Tv. if not follows that 0 < M(T v, BKv, t) < 1, for all t > 0; then by taking x = u and y = v in (ii), we 
get that 
M(Tv, BKv, t) >  (min{M(Tv, Tv, t), M(Tv, Tv, t), M(BKv, Tv, t),  
                                         M(BKv, Tv, t), M(Tv, Tv, t)}). 
                        = (min{1, 1, M(BKv, Tv, t), M(BKv, Tv, t), 1}) 

                        > (min{M(BKv, Tv, t), M(BKv, Tv, t), M(BKv, Tv, t),  
                                       M(BKv, Tv, t), M(BKv, Tv, t)}) 
                        =   (M(BKv, Tv, t)). 

Thus M(Tv, BKv, t) >  (M(BKv, Tv, t)) > M(BKv, Tv, t), which is a contradiction. Therefore, BKv = Tv. 
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Thus AHu = Su = BKv = Tv = z(say).                                                     (3.1)(I) 
Since {AH, S} and {BK, T}are weakly compatible, AH(Su) = S(AHu) and BK(Tv) = T(BKv).  i.e, AHz = Sz and BKz = Tz. 
Now we assert that AHz = z.  
Again suppose not; that is 0 < M(AHz, BKv = z, t) < 1 for all t > 0. 
Then by taking x = z and y = v in (ii), we get that 
M(AHz, BKv = z, t) >  (min{M(Su = AHz, Tv = z, t), M(AHz, Sz = AHz, t),     
                                                 M(BKv = z, Tv = z, t), M(BKv = z, Sz = AHz, t), 
                                                 M(AHz, Tv = z, t)}) 
                                 = (min{M(AHz, z, t), 1, 1, M(z, AHz, t), M(AHz, z, t)}) 

                                                  (min{M(AHz, z, t), M(AHz, z, t), M(AHz, z, t), 
                                                                M(AHz, z, t), M(AHz, z, t)}) 
    = ( M(AHz, z, t)) 

Thus M(AHz, z, t) > (M(AHz, z, t)) > M(AHz, Sz, t), which is a contradiction. 
Therefore, AHz = z. 
Similarly, we can prove that BKz = z. Hence AHz = Sz = z = BKz = Tz.  
Suppose SA = AS.  
Since AH = HA, we have AHAz = AAHz = Az and SAz = ASz = Az.  
We now assert that Az = z. If not, by taking x = Az and y = z in (ii), we get that 
M(Az, z, t) >   (min{M(Az, z, t), M(Az, Az, t), M(z, z, t), M(z, Az, t), M(Az, z, t)}) 

                   = (min{M(Az, z, t), 1, 1, M(z, Az, t), M(Az, z, t)})  

                   > (min{M(Az, z, t), M(Az, z, t), M(Az, z, t), M(Az, z, t), M(Az, z, t)}) 

                    =  (M(Az, z, t). 

Thus M(Az, z, t) > (M(Az, z, t)) > M(Az, Sz, t), which is a contradiction.  
Therefore, Az = z. 
Since AHz = z, follows that Hz = z. Thus Az = Hz = Sz = z. 
Suppose SH = HS. Similarly, by taking x = Hz and y = z in (ii), we get that Hz = z.  
Thus Az = Hz = Sz = z.   
Similarly  (v)  Bz = Kz = Tz = z. 
Hence Az = Bz = Hz = Kz = Sz = Tz = z.   
Uniqueness of the common fixed point follows trivially from (ii). 
 
B. Remarks 3.2 
1) The above Theorem is also valid when (i) is replace by BK(X)  S(X) and (iii) is replaced by CLRT -property. 
2) If (i) is replaced by AH(X)   T (X) and BK(X)   S(X), then the Theorem holds when (iii) is replaced by any one of the 
following: CLRS-property, CLRT -property, CLR(AH)-property, CLR(BK)-property. 
Taking H = K = I(the identity mapping on X), we get Result (2.3) of Saurabh Manro et. al[4]. 
 
C. Remark 3.3 
1) The above Corollary is also valid when (i) is replace by B(X)   S(X) and (iii) is replaced by CLRT -property. 
2) If (i) is replaced by A(X) T(X) and B(X)   S(X), then the Theorem holds when (iii) is replaced by any one of the following: 
CLRS-property, CLRT -property, CLRA-property, CLRB-property. Now, we prove a similar result where CLR-property is replaced 
by with JCLR-property; we observe that the condition (i) of Theorem (3.1)(i) is not necessary for establishing this. 

D. Theorem 3.4: Let A, B, H, K, S and T be self mappings of a fuzzy metric space (X, M, *) satisfying the following conditions:  
1) for all x, y X and t > 0 and 0 < M(AHx, BKy, t) < 1, there exists a   such that  
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      M(AHx, BKy, t) >   (min{M(Sx, Ty, t), M(AHx, Sx, t), M(BKy, Ty, t),  
                                                   M(BKy,Sx,t), M(AHx, Ty, t)}), 
2) the pairs {AH, S} and {BK, T} share the JCLRST-property,  
3) the pairs {AH, S} and {BK, T} are weakly compatible mappings,  
4) AH = HA and either AS = SA or HS = SH,  
5) BK = KB and either TB = BT or TK = KT. 
Then A, B, H, K, S and T have a unique common fixed point in X. 
: Sinc the pairs {AH, S}and {BK, T}share the “joint common limit in the ranges of S and T” property, there exist sequences {xn} 
and {yn} in X and a uX such that  

lim lim lim lim .n n n nn n n n
AHx Sx BKy Ty Su Tu

   
      

First, we assert that AHu = Su or equivalently, M(AHu, Su, t) = 1 for all t > 0.  
Suppose not; so    0 < M(AHu, Su, t) < 1, for all t > 0. 
Then by taking x = u and y = yn in (ii), we get that 
M(AHu, BKyn, t) >  (min{M(Su, T yn, t), M(AHu, Su, t), M(BKyn, T yn, t), 
                                                                    M(BKyn, Su, t), M(AHu, T yn, t)}). 
As, n  ,  we get that 
M(AHu, Su, t) > (min{M(Su, Su, t), M(AHu, Su, t), M(Su, Su, t),  
                                                             M(Su,  Su, t), M(AHu, Su, t)}) 
1, 1, M(AHu, Su, t)}) 
                       > (min{M(AHu, Su, t), M(AHu, Su, t), M(AHu, Su, t),  
                                      M(AHu, Su, t), M(AHu, Su, t)})  
                       =   (M(AHu, Su, t)). 

Thus M(AHu, Su, t) >  (M(AHu, Su, t)) > M(AHu, Su, t), which is a contradiction.  
Therefore, AHu = Su. 
Now, we assert that BKu = Tu; if not, that is 0 < M(Tu, BKu, t) < 1 for all t > 0, then  
by taking x = u and y = u in (ii), we get that 
M(Tu, BKu, t) >  (min{M(Tu, Tu, t), M(Tu, Tu, t), M(BKu, Tu, t),  
                                         M(BKu, Tu, t), M(Tu, Tu, t)}). 
                        = (min{1, 1, M(BKu, Tu, t), M(BKu, Tu, t), 1}) 

                        > (min{M(BKu, Tu, t), M(BKu, Tu, t), M(BKu, Tu, t),  
                                       M(BKu, Tu, t), M(BKu, Tu, t)}) 
                        =   (M(BKu, Tu, t)). 

Thus M(Tu, BKu, t) >  (M(BKu, Tu, t)) > M(BKu, Tu, t), which is a contradiction. Therefore, BKu = Tu. 
Thus AHu = Su = BKu = Tu = z(say).      (that is  (3.1)(I)) 
From this stage, the proof of the theorem is same as that of Theorem(3.1).  By taking H = K = I, we get Result (2.10) of Saurabh 
Manro et. al[4]. 

E. Remark 3.5: The above theorem is also valid when the condition (ii) is replaced by any one of the following: JCLR(AH)(BK)-
property, JCLR(AH)T -property, JCLRS(BK)-property. 

We hereunder give examples in support of our theorems. 

F. Example 3.6:  (X, M, *) is a Fuzzy metric space, where X=[0,  ) with the standard metric,  
0   if  and 0,

( , , )
1

x y t
M x y t

otherwise
 

 

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and * is the min t-norm, i.e, * min{ , },for  all , [0,1].a b a b a b   
Let A, B, H, K, S and T be the self mappings on X, defined by  

1
2

00  16,  16,
( )                ( )

1  16,  16,
if x if x

A x S x
if x if xx

      
 

Bx=0, Hx=x, Kx=
5
x

 and Tx=x2, for all x X . 

Define :[0,1] [0,1]   by 
1

2(t) ,  for all [0,1].t t      

Take 2

1
n nx y

n
  .  Then  lim lim lim lim 0 (0).n n n nn n n n

AHx Sx BKy Ty S
   

      

So,  {AH, S} and {BK, T} share the CLRS-property. 
1) Case 1: 16 and x y X  . L.H.S.=M(AHx, BKy, t)=M(0, 0, t)=1. Hence L.H.S.  R.H.S. 

2) Case 2: 16 and x y X   
L.H.S.=M(AHx, BKy, t)=M(1, 0, t)=0. 

R.H.S.=
     

   
,  ,  ,  ,  ,  ( {

}

,  ,  ,  ,

, , ,  ,  ),  

min M Sx Ty t M AHx Sx t M BKy Ty t

M BKy Sx t M AHx Ty t


 

           =
     

   

1 2 2 1

2 1 2

2 2

2 1

, ,  ,  1,  ,  ,  0,  , ,

1, , ,  0,

{

, } 

min M x y t M x t M y t

M y t M x t
 

             1 2 1 2 1 2(0, , ) 0  (since 0)M x t x   
           = L.H.S. 
The remaining conditions of the Theorem(3.1) are clearly satisfied.  It follows that ‘0’ is the unique common fixed point of  A, B, H, 
K, S and T (in X). 
 
G. Example 3.7:  (X, M, *) is a Fuzzy metric space, where X=[0, 20) with the standard metric,  

0   if  and 0,
( , , )

1
x y t

M x y t
otherwise
 

 


 

and * is the min t-norm, i.e, * min{ , },for  all , [0,1].a b a b a b   
Let A, B, H, K, S and T be the self mappings on X, defined by  

1
2

00  0 4,  0 4,
( )                ( )

1  4 20,  4 20.
if x if x

A x S x
if x if xx

          
 

Bx=0, Hx=x, Kx=
5
x

 and Tx=x2, for all x X . 

Define :[0,1] [0,1]   by 
1

2(t) ,  for all [0,1].t t      

Take 
1

n nx y
n

  .  Then  lim lim lim lim 0 (0) (0).n n n nn n n n
AHx Sx BKy Ty T S

   
       

So,  {AH, S} and {BK, T} share the JCLRST-property. 
1) Case 1: 0 4 and x y X   .L.H.S.=M(AHx, BKy, t)=M(0, 0, t)=1.Hence L.H.S.  R.H.S. 

2) Case 2: 4 20 and x y X    
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L.H.S.=M(AHx, BKy, t)=M(1, 0, t)=0. 

R.H.S.=
     

   
,  ,  ,  ,  ,  ( {

}

,  ,  ,  ,

, , ,  ,  ),  

min M Sx Ty t M AHx Sx t M BKy Ty t

M BKy Sx t M AHx Ty t


 

           =          1 2 1 2 1 2 1
2, ,  ,  1,  ,  ,  0,  , , 1, , ,  0, , } {min M x y t M x t M y t M y t M x t  

             1 2 1 2 1 2(0, , ) 0  (since 0)M x t x   
           = L.H.S. 
The other conditions of the Theorem(3.4) are trivially satisfied.  Clearly, ‘0’ is the unique common fixed point of  A, B, H, K, S and 
T (in X). 
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