

6 III March 2018

http://doi.org/10.22214/ijraset.2018.3486

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

 ©IJRASET (UGC Approved Journal): All Rights are Reserved

2040

A Novel Approach to Explain the Detection of
Memory Errors and Execution on Different

Application Using Dr Memory.
 Yashaswini J1, Tripathi Ashish Ashok 2

1, 2 School of computer science and engineering, VIT University, Vellore, India

Abstract: In a program there are many bugs residing in the source code and one of the most likely bug is the errors related to
memory. This memory related errors are identified first and fixed. Memory errors include uninitialized memory, unaddressable
memory etc. Memory leaks are considered as an error which exists because of allocation of memory by dynamic programming or
run time of program become unreachable. Also, these leaks play an important role in delays of response time and also cause
application failure. This paper will show the tool names “Dr Memory “which is a memory debugging tool and also the analysis
of results showing different errors getting from this debugging tool. The plus point of the tool is to get the execution and result
without disturbing the ROM. It is the first tool which is compatible with both windows and Linux.
Keywords: Dr Memory, Memory errors.

I. INTRODUCTION
The memory checking tools are there for the identification of type of errors in the program. These errors relate to memory are the
main course of the delays in program execution and response time, which results in unacceptable time consumption. The memory
related errors are counted as the bugs in the program as this cause the interrupts in execution. Many preventive measures are applied
while programming and it is only possible because of symptoms for errors. Some memory related errors can also cause crashes of
program while it is in execution. This will make user frustrated as their program get crashed in the middle of the execution and they
may face loss of data of the program. We can’t rely on the counter measure problem because it will be done only when we set some
symptoms of errors. That is why we need some powerful tool which will detect the type of error, the program may face to that also
in systematic manner. There are many memory checking tools in the today’s date. Tools like valgrind, memcheck [1], purity, Intel
parallel Inspector and Insure ++. These are tools which detects the memory related errors like references of freed memory,
uninitialized memory, calls which are invalid like calling of free () twice for same memory and also leaks in memory. It is difficult
to build this tool as it is not easy to implement and also it has complex codes.

A. Three major Challenges faced while Implementing a tool for Memory Related Errors
1) Performance: This challenge is faced all the time while implementing any type of Program. But here this is most important

challenge we have to pass through as the tool will execute and request for more process for the scanning of the whole program.
This will help us to track the allocation of memory.

2) Accuracy: whatever result we are getting form the tool should detect the real errors that should not give false positives and
should display only those which are violating errors. If we get the errors which in deed are not violating can cause lot of
problems like loss of important information regarding the program. Now to acquire accuracy in tool we have to get the full
scanning which will cause slower performance.

3) Compatibility: This challenge is most required for the usage of tool as the program should be implemented like that it can
execute on low level operating system and also accepts its architecture. There is more demand for Windows operating system
compared to UNIX, then also the most popular tool MemCheck [1] runs only on UNIX.

Tools execute their program in user mode because the memory references created by the kernel cannot be scanned by the kernel.
Due to this, the tool should scan the application memory, which gets affected by the calling of their individual function. Now, to
overcome there should be thorough knowledge of parameters or number of arguments passed in the function call. This is not easy to
be done for the Windows operating system, as this is proprietary system and also it contains multiple heap libraries which make it
more complex.
This paper shows the memory checking tool Dr Memory that overcome the above listed challenges with analysis of the result
getting from the execution of memory checking tool.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

 ©IJRASET (UGC Approved Journal): All Rights are Reserved

2041

II. LITRATURE REVIEW
Nowadays the most extensively used memory checking tool is MemCheck [1], which is built on Valgrind [2] which is a dynamic
instrumentation platform. Dr. Memory [3] has some properties such as shadow combination rules and propagation which are almost
similar to MemCheck[1]. But MemCheck[1] supports only Linux platforms. It uses JIT compilation technique which includes
dynamic recompilation. It detects the memory that you should not access, undefined values, memory leaks, overlapping pointers in
memory and related functions, incorrect release of heap memory, etc. Valgrind [2] has tools associated with it like MemCheck [1],
Addr sanitiser[4], Massif[4] etc.

A. Now We Shall Look Into Some Of The Existing Memory Error Detection Tool
1) Leak Tracer [5]: It only detects the memory leaks. It was designed in competition valgrind [2] and labium.
2) MemCheck [1]: Including this, there are many tools in Valgrind. Uninitialized memory [6], memory leaks [7] are detected by

this tool.
3) Windows Leaks Detector [8]: This tool will scan for the errors from the memory while the application is executing. No

interference is done in the application.
4) Purify [13]: First marketable tool. Memory leaks and detection of use after free error are detected by this tool. This approach is

also used in MemCheck[1] and Dr Memory.
5) Insure++ [12]: It supports inserting instrumentations at any place which include prior to the compile time and at link time and

at run time. It reports uninitialized memory [6].
Some of the other memory error detecting tools are DUMA [9], Deleaker [10], BCHECK [11], Electric Fence [14], MemWatch [14]
etc.
For some of the tools like Leak Tracer, application must free all of its memory prior to exiting, though it have data whose lifetime is
process lifetime. Reachability based Leak detection [15] uses scanning of memory to find orphaned memory allocation which can’t
be accessed. This type of leak detection is used in modern tools, which includes our Dr. Memory too.

III. TOOL OVERVIEW
A technique used in Dr Memory is memory shadowing. It is used for the tracking of a data of target application. Target application
is an application that runs on the Dr Memory tool for the memory related errors. This technique is used to increase a computers
speed by using high speed RAM memory in place of slower ROM memory. RAM is about three times as fast as ROM. The concept
of memory shadowing is to copy every bite of applications memory along with its meta data from ROM to RAM memory. This will
allow us to analyze those data without disturbing the current execution of that application. It can identify the errors from that
shadowed data.

A. This technique Indicates Three States
1) Unaddressable: Memory which are not accessible by the application.
2) Uninitialized: Memory which are not written and unable to read but can be addressable.
3) Defined: Memory which are both addressable and defined.
Also, this tool considered the invalid memory pages as unaddressable and those memory which
are top of stack are also considered as unaddressable. As shown in the Fig. 1, the memory on the heap which is allocated outside the
malloc block is also unaddressable.

Figure 1: Shadowed memory (stack and heap) of the target application

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

 ©IJRASET (UGC Approved Journal): All Rights are Reserved

2042

For a quick explanation of a memory shadowing technique, there are codes to control hardware devices such as keyboards, is
normally executed in a special Rom chip called the BIOS ROM. However, this chip is slower than the general-purpose Ram that
comprises main memory that is RAM. Therefore, PC’s BIOS code is copied into RAM, when the computer boots. This said as
shadow RAM.

A. Memory Tracking
It can be said as heap tracking because of steps taken according to windows platform. As there are multiple heap libraries to choose
from. Two approaches are taken for the modifications and monitoring in heap library calls.
Wrapping and replacing are those approaches. Wrapping will allow the original code to execute but also adds a prologue and
epilogue where the modification of return value and their arguments is allowed. Replacing will use a custom function and will not
execute any of the original library function.
The tool MemCheck [1], replaces heap library function and this tool operates on a range of UNIX operating system. But, in
Windows there should be wrapping instead of replacing. In wrapping, we have to depend on known subset of API, while in
replacing we need to emulate every nuance of the entire API. However, wrapping has advantages over replacing. Wrapping will
keep the layout of heap safely and attaching to an application partway through execution, where the application has already
allocated heap objects. A heap is an area of preserved computer main storage that program process can use to store data in some
variable amount that won’t be known until the program is running. A program may accept different amount of input from one or
more, processing and then do the processing on all input data at once. This heap are there in windows in multiple libraries.
Along will wrapping there should be transparency that it should not confuse us and also not to crash the program application. This
transparent wrapping is not taken by Valgrind and Pin, as they add a frame on the top of the stack.
There are three methods explored and can be used for wrapping functions transparency and robustly. There will be two processes
while calling a function pre-hook and post-hook. Pre-hook means before the call and post-hook means after the call. In pre-hook,
there will be some address of the function to which it has to go, and we just have to locate the address and invoke at that point.
While post-hook is difficult because we have to locate return paths from the function.
Techniques to locate return path share:
1) Analyze the code first and build a control flow graph from that entry point. So, through this we can able to get the return paths

easily. then also it is not easy to analyze an entire function.
2) The second one will keep an eye on the call site as we know the return point at the call instruction. post-hook can be set up after

identifying the call target. And the pothook will be set for the invoked function after the call. There are two types of calls: direct
calla and indirect calls. In Indirect call, the flow goes through a memory location and target cannot be analyzed statically.

3) Dr Memory uses this technique, as this is more dynamic and reactive approach. In this technique after getting inside the target
function, return address is obtained and recorded for post-hook when it is reachable late. If the instruction of that address is
already executed, then it will be flushed from the cache.

Recursion counter is used to identify in which layer they are operating currently. As in layered heap call, we need to be careful to
only modify the arguments for the outer layer.

B. Error types Related to dr Memory
After executing target application by Dr Memory, the reports will be listed with errors and will be created in text file.
The error report includes:
1) Error numbers
2) Type of error
3) Address and size of the memory access
4) Location of error where it is detected which is done by thread identifier
5) Unaddressable access
Any write or read of a memory location which is not allocated is taken as an “unaddressable access” by Dr Memory. Accessing to a
memory address which is invalid is an unaddressable access.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

 ©IJRASET (UGC Approved Journal): All Rights are Reserved

2043

Figure 2: Occurring of unaddressable access in a heap region providing the target address which is inside a freed region.

C. Uninitialised read
As shown in Fig. 3, it is reported when an application reads addressable memory which is not written from the time it was allocated
When only a section of region is uninitialized, Dr Memory will report that section region. So that it will be easier to track down the
problem. As shown in the Fig.3, it will also show which section of the socket call discovered this error.

Figure 3: Example of uninitialized read which is occurred when structures or buffers passed to system calls

D. Invalid heap Arguments
This error is considered when a pointer which is not pointing to any valid address and that pointer is passed to free() as shown in
Fig.4.

Figure 4: Problem arise immediately as an address 0x00001234 is an invalid heap address

E. Memory Leas
Scanning of leaks is classified in three categories by Dr Memory:
1) The application that can reach the memory: This is actually not considered as leak. Many of the application do not free the

memory after use whose lifetime is same as the process lifetime. Therefore, it is not reflected as error by Dr Memory.
2) The application that can defiantly reach the memory: This defines a leak by Dr Memory. Here there is no way to free the

memory as it lost all its references.
3) The application which reaches the memory only through pointers to the mid of allocation: This is possible leak in Dr Memory.
Further categorizing, there will be two types of leaks: Direct and Indirect leaks. An Indirect leak is an object of heap which is
accessible by pointers to its beginning address, but these leaks are initiated in leaked objects. As shown in Fig.5, Dr. Memory will
also reports number of leaks, possible leaks and accessible allocation along with call stack. Leaks and possible leak will be listed in
the report by default. But reachable allocation are not shown by default to reduce the overhead.

Figure 5: Example lines from the output result where errors are ignored

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

 ©IJRASET (UGC Approved Journal): All Rights are Reserved

2044

If use –show reachable option, we can able to see still reachable allocations as shown in Fig.6.

Figure 6: Example of output result where no errors are ignored.

Figure 7: GD error found in target application.

F. Warning
In this type, we are not getting any errors, but we will be warned for condition which has unusual memory relation. This will be
helpful for an application developer to know about the unusual memory related conditions. For example, as shown in Fig.8.

Figure 8: Example for warning message of the target application

IV. EXPERIMENTAL ANALYSIS
A. Example1.c
We have executed 3 different programs containing C source code. These three programs have different errors as shown further in
the paper.

#include<stdio.h>
#include<stdlib.h>
int main()
{
 char *x = malloc(128*sizeof(char));
 char *y = malloc(128*sizeof(char));
 y = x;
 free(x);
 free(y);
 return 0;
}

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

 ©IJRASET (UGC Approved Journal): All Rights are Reserved

2045

B. Output Result

1) Description: The above Example 1.c can be interpreted in the following way. Here, in the code there are two pointers x and y.

Then the pointer x is assigned to pointer y (i.e y will get the address of x). After freeing those pointers then also the address of b
will not be the same as it is getting the address of a. This leads to Invalid Heap Argument error. This is one of the error which is
faced run time, there will be no compiling error for this. This code will lead to dangling pointer. Likewise, Dr. Memory can be
applied to the other applications too.

C. Example 2.c

#include <stdlib.h>

int main()

{
 char *y = malloc(9);
 y [9] = 'a';
 return 0;
}

Description: The above Example 2.c can be interpreted in the following way. The above result will tell us that the pointer y we have
declared has allotted a space for 9 bytes as the char data type is of 1 byte. And we are giving a write operation to that memory which
is outside the range. Therefore, we are getting the unaddressable access error. Also we will be warned for the invalid read of the
variable y. This leads to leak in memory. We will also get the process id and thread which was used for execution. Likewise, Dr.
Memory can be applied to the other applications too.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

 ©IJRASET (UGC Approved Journal): All Rights are Reserved

2046

D. Example3.c
#include <stdlib.h>

int main ()

{
 char *i = malloc (100);
 return 0;
}

1) Output result

2) Description
The above Example 3.c can be interpreted in the following way. We can clearly see that memory leak is there and it is caused by a
call of malloc in main. Memory leaks don’t cause any outward problems until our memory is full and our call for malloc fails. That
is why memory leaks are the most difficult bugs to find. The number of mallocs differ from the number of frees then it will cause
the leak in memory, so it should not differ. Likewise, Dr Memory can be applied to the other applications too.
It can be summarized from the three examples that section 4.1 describes “Invalid heap memory”, section 4.2 describes
“unaddressable access error” and section 4.3 describes “Memory leak caused by malloc function”. From the given three examples
we can interpret some of the errors detected by the memory tool. Those three examples are on C language and we can analyze that
the target application should be in the .exe format. The examples and description are given for their individual error result and also
the error type. Still more errors can be detected by this tool as discussed in section 3.2. This tool can be applied to many Target
applications to detect memory related errors which can be used for debugging those errors. And these errors will help developers to
prevent or solve further in their target application.

V. CONCLUSION AND FUTURE WORK
This paper concludes the techniques used in the Dr Memory regarding the types of errors described in detail. Also executed different
target application on Dr Memory which also varies with time consumption along with the type of errors. This Memory debugging
tool is compatible on Windows and Unix platform. The output result in this paper is getting on the Windows platform, hence we are
getting the GDI errors, and this GDI is errors are detected in Windows API.
As this tool is open source many future project ideas are using this memory debugging tool. We can able to know the thread and the
process used last wrote a memory value which is used in debugging and many other applications. In some cases, multiple process
creation is there in a target application but some of the user might want a single report per process instead of getting multiple
reports, so post processing can be added in the existing code. We can create exception for the required error that we know it’s going
to work it can be made such that .c or .sql files are taken as input directly. Dr. Memory identifies the line the leak occurred, but not
the function call that returned the leaky pointer. This can be overcome by extending this tool in future. The error is not specifying
from which function call error has occurred, the next outcome of the tool can overcome occur but we don’t want that in the report,
so annotation feature can be added which is not yet existing in Dr Memory. Dr. Memory takes only .exe files only as input, therefore
as a part of future this loop hole.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

 ©IJRASET (UGC Approved Journal): All Rights are Reserved

2047

REFERENCES
[1] John Gyllenhaal, “Using ’s MemCheck tool to find memory errors and leaks in MPI and serial applications on LINUX“,

https://computing.llnl.gov/code/memcheck/
[2] Valgrind TM Developers, “MemCheck a memory error detector,” http://valgrind.org/docs/manual/mc manual.html
[3] Dr.Memory,”
[4] Florent Bruneau , “Memory part 5 – debugging_tools,”https://techtalk.intersec.com/2013/12/memory-part-5-debugging-tools/, pp.
[5] Leak Tracer,trace and analyse memory leaks in c++ programs,” http://www.andreasen.org/LeakTracer/2003.
[6] “Reading uninitialized memory”,

http://www.qnx.com/developers/docs/6.5.0/index.jsp?topic=%2Fcom.qnx.doc.ide.userguide%2Ftopic%2Fmemory_uninit_mem_read_.html.
[7] “What are memory Leaks, “ , https://msdn.microsoft.com/en-us/library/ms859408.aspx
[8] Sourceforge net production ,“Windows leak Detector” , http://winleak.sourceforge.net/
[9] “DUMA” ,http://duma.sourceforge.net/README.txt
[10] “DELEAKER” , http://www.deleaker.com/docs/introduction.html
[11] “BCHECK ” , http://docs.oracle.com/cd/E18659_01/html/821-1380/blaio.html
[12] Parasoft, “Insure++” , http://www.parasoft.com/jsp/products/insure.jsp?itemId=63.
[13] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and access errors” , in Proc. of the Winter USENIX Conference, Jan. 1992,pp. 125–136.
[14] “Memory debuggers for Linux coding,” http://www.computerworld.com/article/3003957/linux/review-5-memory-debuggers-forlinux-coding.html ,pp. 1-2.
[15] “Reachability”, https://gist.github.com/darkseed/1182373.

