

6 IV April 2018

http://doi.org/10.22214/ijraset.2018.4537

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

3227 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Potential Factors for Software Risk Management
Dr Rachna Soni1

1Associate Professor & Head Department of Computer Science & Applications DAV College For Girls,Yamunanagar

Abstract: This paper analyses Risk Analysis and Management as a series of steps that helps a software team to understand and
manage uncertainty. It analyses the probabilistic, heuristic Macro Model Approaches for assessing software risk by Measuring
reliability. This focuses existing software process simulation which is the management of software development risks. It analyses
study of software development risk factors for software development risk management, particularly in assessment and planning
phases. This discusses the base model for Software Development Risk Factors designed to support decision making of risk
management

I. INTRODUCTION
"Large software projects will never be without some risk, but if risks can be brought down to acceptable levels, that will be a good
beginning" - Capers Jones, 1998.
As stated by Capers Jones, Chairman Software Productivity Research Inc. [Jon98],software has been the most troubling technology
of the 20th century. Major software projects have the highest probability of being cancelled or delayed of any known business
activity. Once deployed, software projects often display excessive error densities and low levels of reliability. In addition, software
is achieving a very bad public reputation because of several highly publicized disasters. However, it is not a law of nature that
software projects will run late, be cancelled, or be unreliable after deployment. A careful program of risk analysis and abatement can
reduce the probability of major software disasters, and also shorten average development cycles at the same time.
Peter Kulik [Kul96a]states that awareness of Software Risk Management is growing throughout the industry. Proven industry results
from implementation of Software Risk Management include earlier project completion, reduced project cost, more predictable
schedules, and improved organizational capabilities. The practice of Software Risk Management includes both top-down and
bottom-up perspectives. Projects that implement Software Risk Management become simpler and more focused. Further, a variety
of tools are available for easier implementation.
A simple definition of a "risk" is a problem that could cause some loss or threaten the success of a project, but which hasn’t
happened yet. These potential problems might have an adverse impact on the cost, schedule, or technical success of the project, the
quality of our software products, or project team morale. The objectives of software risk management are to identify, address, and
eliminate software risk items before they become threats to success or major sources of rework. In general, good project managers
are also good managers of risk. It makes good business sense for all software development projects to incorporate risk management
as part of project management. There are a number of definitions and uses for the term risk, but there is no universally accepted
definition. What all definitions have in common is agreement that risk has two characteristics
Uncertainty: an event may or may not happen an event has unwanted consequences or losses.

A. Risk Management Can
1) Identify potential problems and deal with them when it is easier and cheaper to do so - before they are problems and before a

crisis exists.
2) Focus on the project’s objective and consciously look for things that may affect quality throughout the production process.
3) Allow the early identification of potential problems (the proactive approach) and provide input into management decisions

regarding resource allocation.
4) Involve personnel at all levels of the project; focus their attention on a shared product vision, and provide a mechanism for

achieving it.
5) Increase the chances of project success.
Risk management is the application of appropriate tools and procedures to contain risk within acceptable limits. Risk management
consists of several sub disciplines Risk assessment is the process of examining a project and identifying areas of potential risk. Risk
identification can be facilitated with the help of a checklist of common risk areas for software projects, or by examining the contents
of an organizational database of previously identified risks and mitigation strategies (both successful and unsuccessful) Risk

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

3228 ©IJRASET (UGC Approved Journal): All Rights are Reserved

analysis involves examining how project outcomes might change with modification of risk input variables. Risk prioritization helps
the project focus on its most severe risks by assessing the risk exposure. Exposure is the product of the probability of incurring a
loss due to the risk and the potential magnitude of that loss. This prioritization can be done in a quantitative way, by estimating the
probability (0.1 – 1.0) and relative loss, on a scale of 1 to 10. Multiplying these factors together provide an estimation of the risk
exposure due to each risk item, which can run from 0.1 through 10 . The higher the exposure, the more aggressively the risk should
be tackled. It may be easier to simply estimate both probability and impact as High, Medium, or Low. Those items having at least
one dimension rated as High are the ones to worry about first. Risk avoidance is one way to deal with risk: don’t do the risky things!
You may avoid risks by not undertaking certain projects, or by relying on proven rather than cutting edge technologies. Risk control
is the process of managing risks to achieve the desired outcomes. Risk management planning produces a plan for dealing with each
significant risk, including mitigation approaches, owners, and timelines. Risk resolution is execution of the plans for dealing with
each risk. Finally, risk monitoring involves tracking your progress toward resolving each risk item. The list of evil things that can
befall a software project is depressingly long. The enlightened project manager will acquire extensive lists of these risk categories to
help the team uncover as many concerns as possible early in the planning process. Possible risks to consider can come from group
brainstorming activities, or from a risk factor chart accumulated from previous projects. The Software Engineering Institute has
assembled taxonomy of hierarchically-organized risks in 13 major categories, with about 200 thought-provoking questions to help
you spot the risks facing your project [Carr, 1993]. Capers Jones has identified the top five risk factors that threaten projects in
different application sectors [Jones, 1994]. Table 1 illustrates those factors, and the approximate percent of projects to which they
apply, in the management information systems (MIS) and commercial software sectors.

Table 1. Most Common Risk Factors for Various Project Types
Risk Factor Percent of

Projects at
Risk

Creeping user requirements 80%
Excessive schedule pressure 65%
Low quality 60%
Cost overruns 55%
Inadequate configuration control 50%
Inadequate user documentation 70%
Low user satisfaction 55%
Excessive time to market 50%
Harmful competitive actions 45%
Litigation expense 30%

B. Assessing Software Risk by Measuring Reliability
A probabilistic approach has successfully assessed the reliability of the product [Lyu 1995,Schneidewind 1975, Musa 1998] .
However, this approach addresses the reliability of the product, not the risk of failing to complete the project within budget and
schedule constraints. These approaches could be used to assess risks related to failures of software projects. A concern with these
approaches is that the resulting assessments arrive too late to economically correct possible faults, because the software product is
mostly complete and development resources are mostly gone at the time when reliability of the product can be assessed by testing.
�Heuristic approaches: researchers assess the risk from the beginning, in parallel with the development process. However, these
approaches are less rigorous, typically subjective and weakly structured. Basically these approaches use lists of practices and
checklists [SEI, 1996, Hall 1997, Charette 1997, Jones 1994] or scoring techniques [Karolak1996]. Paradoxically, SEI defines
software technical risk as a measure of the probability and severity of adverse effects in developing software that does not meet its
intended functions and performance requirements [SEI, 1996]. However, the term "probability" is misleading in this case because
the probability distribution is unknown.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

3229 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Macro Model Approaches: A group of researchers uses well-known estimation Models to assess how risky a project could be. The
widely used methods COCOMO[Boehm 1981], and SLIM [Putnam, 1980] both assume that the requirements will remain
unchanged, and require an estimation of the size of the final product as input for the models[Londeix 1987]. This size cannot be
actually measured until late in the project.
Defining “simulation” is a notoriously difficult task. However, the type of simulation that the readers of Management Science have
most often encountered has three features:
1) There are one or more stochastic input processes that are specified via the language of probability and from which synthetic

realizations can be generated
2) There is a logical model that completely describes how the system of interest reacts to realizations of the stochastic inputs. The

logical model is usually an algorithm that updates the System State upon the occurrence of some discrete events.
3) There are output processes, typically ordered by some concept of time, that represent the system behavior of interest to the

analyst.
One of the proposed purposes for software process simulation is the management of software development risks, usually discussed
within the category of project planning/management (Kellner et al. 1999) However, modeling and simulation primarily for the
purpose of software development risk management has been quite limited. A notable exception is Madachy’s (1994) model. It was
designed partially for the purpose of risk assessment, which was achieved through two inputs that represented combinations of
COCOMO drivers heuristically graded for degrees of risk. This paper describes another approach to simulation for managing
software development risks, that of researching common and significant software development risk factors and their effects, then
adapting a base model as necessary for simulating the selected factors. This simulator is a tool designed specifically for risk
management.
Among the topics often discussed in the literature on software development risk management is the subject of risk factors. A variety
of approaches have been used to investigate SDRFs. From them have emerged lists of risk factors, as well as taxonomies,
questionnaires, and matrices for assessing software development risk. Some investigators have produced SDRF lists numbering on
the order of 150 or more factors. A study of this literature (Houston 2000) revealed the existence of a set of common and significant
SDRFs. Twenty-nine (29) of these were identified and selected for further study.
While a small but important body of work identifying SDRFs is accumulating, little work has been undertaken on the potential
effects of these factors. Since knowledge of these effects is necessary for modeling and simulating SDRFs, a study was performed in
two stages to identify and quantify the potential effects. In the first stage, software project managers participated in a qualitative
survey, which utilized causal diagrams, and helped to identify significant potential effects of 29 risk factors. In the second stage, six
of the 29 SDRFs were selected for further investigation (based on their importance and interrelationships) and a web-based
quantitative survey was used to collect data on the actualized effects of the six factors. This data was used both to substantiate the
results of the first survey and to develop quantitative relationships for the simulation model.
Although the data did not substantiate some of the effects suggested by the literature and by the first survey, analysis revealed other
statistical relationships not previously discussed in the software development literature. The data analysis also provided probability
distributions for the random variables representing risk factor effects.
A base model for the SDRFs was developed by combining features from two published software process simulators, Abdel-Hamid
and Madnick (1991) and Tvedt (1996), then updating and extending the combination, particularly in the area of quality
management.
The base model represents a waterfall process and incorporates sectors for Planned Staffing, Actual Staffing, Effort Allocation,
Project Planning, Project Control, Productivity, Work Flow, and Quality Management.
The model was designed to support decision-making for three kinds of risk management activities: risk mitigation, risk contingency
planning, and risk intervention. In typical usage for risk assessment, runs are made for different combinations of probable risks. This
also establishes baselines for risk management studies. For risk mitigation study, setting inputs at the outset of a run may simulate
various plans. For risk contingency planning, triggers have been added to the model so as to simulate a risk mitigation activity upon
the occurrence of a predetermined condition. For risk intervention, outputs provide the user with simulated project states so that a
“project” may be paused and inputs may be manipulated, thereby simulating an unplanned change for reducing the effects of an
actualizing risk.
This simulator, with its ability to model development project outcomes stochastically, demonstrates that explicit modeling of risk
factors and their potential effects provides an additional tool for software development risk management, particularly in the
assessment and planning phases. Software project managers can use such a model to study the potential impact of various

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

3230 ©IJRASET (UGC Approved Journal): All Rights are Reserved

combinations of risk factors on project outcomes, then run simulations for risk mitigation plans, risk contingency plans, and
interventions, all as means of elucidating their experience and supporting project management decisions.
Research into SDRFs is ongoing; research into their potential effects has begun.Continued research in this area is expected to
provide further insights into and data for the development of simulators for software project risk management. Modeling constructs
for risk factors is also evolving. Experimentation with risk-oriented simulators may provide insights into the relative influence of
various risk factors and into best practices for project risk management. Though some SDRFs are quite common, some appear to be
specific to certain software development domains (Jones 1994), which suggests domain-specific simulation models for risk
management.

C. Few Software Development Risk Factors Are
1) Unavailability of key staff
2) Reliance on a few key personnel
3) Instability and lack of continuity in project staffing
4) Lack of staff commitment, low morale
5) Low productivity
6) Lack of client support
7) Lack of user support
8) Lack of contact person’s competence
9) Inaccurate metrics
10) Lack of organizational maturity
11) Lack of quantitative historical data
12) Inaccurate cost estimating
13) Excessive schedule pressure
14) Inadequate configuration control
15) Excessive reliance on a single development improvement
16) Excessive paperwork
17) Unreliable subproject delivery
18) Creeping user requirements
19) Unnecessary features
20) Immature technology
21) Complex application
22) Large number of complex external interfaces

Risk factors, provide a strong statistical tool for supporting risk management. The model can be designed to support decision-
making for three kinds of risk management activities: risk mitigation, risk contingency planning, and risk intervention. In typical
usage for risk assessment, runs are made for different combinations of
probable risks.

II. DISCUSSIONS AND CONCLUSIONS
So the study of SDRFs can be undertaken to identify common and significant risk factors for modeling in simulation. Qualitative
and quantitative surveys can be used to study the factors and their potential effects. These survey results will provide the basis for
new modeling constructs and statistical relationships to incorporate simulator. This simulator, with its ability to model development
project outcomes stochastically will demonstrate that explicit modeling of risk factors and their potential effects will provide an
additional tool for software development risk management. Software project managers can use such a model to study the potential
impact of various combinations of risk factors on project outcomes.

REFEBRENCES
[1] Jones,Capers,[1998],”Minimizing the risks of software” Technical Report CMU/SEI may pp23-24.
[2] Kulik,Peter,[1996]”What is software Risk Management?”Technical reportCMU/SEI October pp34-35.
[3] Carr, Marvin J., Suresh L. Konda, Ira Monarch, F. Carol Ulrich, and Clay F. Walker. "Taxonomy-Based Risk Identification," CMU/SEI-93-TR-006.

Pittsburgh: Software Engineering Institute, 1993

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

3231 ©IJRASET (UGC Approved Journal): All Rights are Reserved

[4] C. Jones,[1994] “Assessment and Control of Software Risks”, Yourdon Press Prentice Hall, 1
[5] M. Lyu,[1995] “Software Reliability Engineering”, IEEE Computer Society Press.
[6] Schneidewind[1995],” Analysis of Error Processes in Computer Software”, Proceedings of the International Conference on Reliable Software,IEEE Computer

Society, 21-23 April, p 337-346.
[7] J. Musa[1998], “Software Reliability Engineering: More Reliable Software,Faster Development and Testing”, McGraw-Hill.
[8] Software Engineering Institute, Software Risk Management, Technical Report CMU/SEI-96-TR-012, June 1996
[9] E. Hall[1997], Managing Risk, Methods for Software Systems Development, Addison Wesley.
[10] R. Charette, K. Adams, & M. White,[1996] “Managing Risk in Software Maintenance”, IEEE Software, May-June,.
[11] D. Karolak,[1996] “ Software Engineering Management”, IEEE Computer Society Press, 11. B. Boehm,[1981] “ Software Engineering Economics”, Prentice

Hall.
[12] L. Putnam,[1980] “Software Cost Estimating and Life-cycle Control: Getting the Software Numbers”, IEEE Computer Society Press
[13] B. Londeix,[1987] “Cost Estimation for Software Development”, Addison-Wesley.
[14] Kellner, Marc I., Raymond J. Madachy, and David M. Raffo (1999) “Software process simulation modeling: Why? What? How?” Journal of Systems and

Software 46: 91-105.

