

6 III March 2018

http://doi.org/10.22214/ijraset.2018.3556

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

2431 ©IJRASET (UGC Approved Journal): All Rights are Reserved

Code Clone Detection using Generic Approach
Dr.Amita Goel1, Vishal Vats2

1Associate Professor in Department of Information Technology, Maharaja Agrasen Institute of Technology)
2Department of Information Technology Maharaja Agrasen Institute of Technology Sector-22, Rohini, New Delhi-110086, India

Abstract: Of late, the process of development of software has become very tiresome and time consuming. In order to make the
development fast and easy, developers tend to use a pre-existing code with or without altering few lines of the code. This reuse of
code with or without some modification is termed as code clone. Cloning of code has become common problem in development of
software which makes software maintenance really difficult and expensive. The presence of code clones in a source code leads to
inconsistency. In order to stay ahead of these problems, it is very important to detect the presence of code clones in software.
Code cloning reduces the time and effort of the software developer but it also decreases the quality of the software and increases
maintainability. Keeping in mind the importance of code clone detection, various techniques has been proposed for detection of
code clones such as detection based on textual approach, detection based on tokens, detection based on abstract syntax tree,
detection based on program dependency graph and detection based on metrics. In this paper, I purpose detection based on
generic approach.
Keywords: SoftwareMaintainance, Software Development, Code Clone.

I. INTRODUCTION
In software development, it has been seen that it is common to use a pre-existing code with or without some modification in few
lines of code to save time and effort. This reuse of pre-existing code with or without modification is termed as Code Clone. Code
clone has no single or generic definition, each researcher had its own definition.[8] Data from previous work suggests that a
considerable fraction (between 7% to 23%) of the code in a typical software system has been cloned [9] i.e. developer copying and
pasting the code with or without making the changes in the code. Code clones occur in a source code when a developer uses a
existing code in a new way by copying it and using it with or without any modification in functionality. There can be various
reasons for presence of clone in a code. The main reason why developer tries to copy-paste code is that it saves a lot of time in
development and otherwise it is really hectic to start a code from the scratch. Other reason could be like similar coding style. The
developer might see some superficial advantages of using existing code but it becomes a disadvantage when it comes to software
maintainance and overall cost. As the code is copied without alternations , there is a chance of increase in bugs in the software,
because errors present in one module can increase the errors in another when they are linked with modules, increasing bugs in a
software
system[1][10]. Code cloning is found to be a more somber and serious problem in industrial software systems . In presence of
clones, the normal operation of the system may not be affected, but if maintenance teams do not take measures to counter the
problem, further development may become extremely expensive. Clones are supposed to have a negative impact on advancement
and evolution[6] .That’s where there is need for identification of code clones. Identification of clones is a process of identifying
similar part of code in a source code. There has been various code clone detection techniques for different types of code clones. In
this paper, I have mentioned about various types of code clones(Type I, Type II, Type III, Type IV) and various techniques for
their detection such as detection based on textual approach, detection based on tokens, detection based on abstract syntax tree,
detection based on program dependency graph and detection based on metrics.

II. BASICS OF CLONE
Before diving into the various code clone detection techniques, one should be well acquainted with few terminologies:

A. Code Fragments (CF)
A code fragment refers to any sequence of code lines (with or without comments). It can be any granularity, such as, function
definition, begin-end block, or sequence of statements [8][7].

B. Code Clone
A code fragment let’s say CF1 is a clone of another code fragment let’s say CF0 if they are similar syntactically or semantically. By
similar it means f(CF0) = f(CF1) where f is a similarity function.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

2432 ©IJRASET (UGC Approved Journal): All Rights are Reserved

C. Clone Pair
Two code fragments which are similar to each other form a clone pair (CF0; CF1). When multiple fragments are similar to each
other, they form a clone class or clone group [7].

D. Clone Types
Mainly there are two kinds of similarities between code fragments. First is similarity based on program text i.e. Type I, Type II,
Type III and Second is similarity based on functionality i.e. Type IV.
1) TYPE 1: are similar code fragments except for variations in whitespaces, layout and comments. They are known as exact

clones.
2) TYPE II: are syntactically identical fragments except for variations in identifiers, literals, types, whitespaces, layout and

comments. They are known as renamed clones.
3) TYPE III: are copied code fragments with some modifications such as addition or deletion of few statements, comments and

whitespaces. They are known as near miss clones.
4) Type IV: are two or more code fragments that are semantically similar but are syntactically different. They are known as

semantic clones.

III. CODE CLONE DETECTION TECHNIQUES
A. There are different code clone detection Techniques Which detect Various types of Clones presEnt in a Source Code[8]:
1) Textual Approach
2) Token Based Approach
3) Abstract Tree Based Approach
4) Program Dependency Graph Approach
5) Metrics Based Approach

B. Textual Approach
In textual approach or text-based approach, line by line comparison is done between two code fragments in order to find textual
similarity between both the code fragments. This technique does not require any filtration or normalization process and can be
directly applied on the code. Therefore, this approach can detect exact clones with little to no variation in layout or comment [5].
This technique is basically all about string based matching of two code fragments and detecting whether those code fragments are
similar or clone to each other. This technique loses its credibility when there is any change in variable name or syntactical change in
the code fragment. So this approach is not highly efficient and can only detect Type I clones. This approach has a complexity of
O(n) where n is lines of code. It is easy to implement.

C. Token Based Approach
In token based approach lexical analyzer is used. This technique uses a more sophisticated transformation algorithm by constructing
token sequence from the source code using a lexer. The sequence is then scanned for duplicated subsequence of tokens and the
corresponding original code is returned as clones. Lexical approaches are generally more effective over minor code changes such as
formatting, spacing, and renaming than textual techniques [9][2]. This approach can be used to detect Type I and Type II clones.
One can also detect Type III clones using this approach but that would require concatenation of Type I and Type II clones [9]. It has
a complexity of O(n) where n is the number of token sequences.

D. Abstract Syntax Tree Based Approach
This approach uses parser to convert the source code into abstract syntax tree. This approach creates sub trees rather than
constructing tokens for the source code and then pattern matching is applied on them in order to find similar sub trees which are
considered as code clones. This approach follows even more sophisticated algorithm where variable names and constants can be
abstracted in tree creation [5]. This approach is capable of finding out the clones in which there has been some addition or deletion
of statements, that is, Type III clones or near miss clones. This technique requires advanced level of algorithm which in turns
increases its complexity but still it is better than text based or token based techniques[11]. It has a complexity of O (n) where n is
number of nodes of AST. Implementation of the ASTB is very tedious as conversion of source code into tree is difficult.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

2433 ©IJRASET (UGC Approved Journal): All Rights are Reserved

E. Program Dependency Graph Approach
Program Dependency graph approach converts the source code into a Program Dependency Graph (PDG). A PDG is directed graph
representing dependencies between program elements. There are two types of dependencies in a PDG, namely, control dependency
and data dependency [3]. Because of presence of these dependencies PDG carries semantic information. Once PDG is obtained,
isometric sub graph matching algorithm is used to find similar sub graphs and the similar sub graphs are taken as code clones [1].
This approach goes one step further in obtaining a source code representation with high abstraction than other approaches because it
considers the semantic information of the source [4]. This technique is capable of detecting Semantic and syntactic clones in a
source. It has complexity of O (n3) where n is node of PDG.

F. Metrics Based Approach
Metrics based approach is an advanced technique which is used to find all four types of code clones. This technique does not
compare code directly instead source code is first converted into AST or PDG for calculation of metrics like effective lines of code,
number of classes, number of methods, number of different loops, Number of variables and many others[2]. The calculation of
metrics is done by tools like Columbus. The code fragments having similar metrics values are declared as code clones. This
technique is capable of detecting Type I, Type II, Type III and Type IV code clones.

IV. PROPOSED APPROACH
Generic approach is a general approach for finding multiple types of clones present in a Java file. This approach is simple as well as
effective.
Steps for the proposed tool are described below.
A. Step 1: Open two files which has to be checked as source files
B. Step 2: Check similarity between two files using word based comparison. If both files are same then notify user.
C. Step 2: Modulate the files into smaller sub-programs based on functions in the program
D. Step 3: The functions from each file are converted to mycode by variable separation and replacing operands.
E. Step 4: The functions from one file are compared with functions of other file using string matching algorithm i.e. Knuth Morris

Pratt.
F. Step 5: Percentage of presence of clone is shown.
G. Step 6: User can delete the clone from the file and can save it as a new file.
The proposed method mainly aims on checking the number of functions in the files and comparing them using string matching
algorithm. The result of the project can be done manually by selecting two input files. An open dialog tool is used for
selecting the input files. Any two similar java file can be compared. After including the two files, click on the button for finding
potential clones.

Fig 1: Selecting input files Fig 2: Deleting the clone from file

V. CONCLUSION AND FUTURE SCOPE
The proposed approach is generic approach which is able to identify Type1, Type2 and Type 3 clones. This is developed in
NetBeans using Java. It provides a user friendly graphic user interface as shown in Fig1. This tool is based on the concept of
extracting functions from the files and comparing them using string matching. In same of same files, the user is notified about the
similarity. This tool can be further enhanced in terms of efficiency and complexity. Code Clone Detection and its removal is an
active research area and work has been carried out on the same.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 6 Issue III, March 2018- Available at www.ijraset.com

2434 ©IJRASET (UGC Approved Journal): All Rights are Reserved

VI. ACKNOWLEDGEMENT
I would like to thank Dr. Amita Goel for her immense help, support, useful discussions and valuable recommendations throughout
the development of this paper.

REFERENCES
[1] Kiran preet, Sushil Garg, “Detection and measuring similarity in code clone using ripley’s function Approach.”, IJAST,Volume 2, 2014
[2] Sushma, Jai Bhagwan,"A Novel Metrics Based Technique for Code Clone Detection”, Guru Jambheshwar University of Science & Technology,IJECS, Volume

05 Issue 9 Sep., 2016
[3] Yoshiki Higo, Yasushi Ueda, Minoru Nishino, Shinji Kusumoto,"Incremental Code Clone Detection: A PDG-based Approach",Graduate School of Information

Science and Technology, Osaka University
[4] Sunayna, Kamna Solanki, Sandeep Dalal, Sudhir,"Comprehensive Study of Software Clone Detection"M.D. University, IOSR Journal of Computer

Engineering (IOSR-JCE),Vol 18, Issue 4, Ver. II (Jul.Aug. 2016)
[5] Surbhi Sonika, Rajkumar Tekchandani,"Hybrid Approach for Code Clone Detection"Thapar University, Volume 2 Issue 5, Jul-Aug 2014
[6] Shahid Ahmad Wani, Shilpa Dang,"A Comparative Study of Clone Detection Tools",International Journal of Advance Research in Computer Science and

Management Studies,Vol.3, Issue 1, Jan 15
[7] Prajila Prem,"A Review on Code Clone Analysis and Code Clone Detection",International Journal of Engineering and Innovative Technology (IJEIT)Volume

2, Issue 12, June 2013
[8] Dr.Amita Goel, Vishal Vats,“Comparison and Evaluation of Code Clone Detection Techniques “ Maharaja Agrasen Institute of Technology,IJRASER, Volume

5 Issue XII (December 2017)
[9] Harpreet Kaur, Rupinder kaur,"A Review: Clone Detection in Web Application Using Clone Metrics",Yadavindra College of Engineering (YCOE), Volume 2

Issue 4, Jul-Aug 2014
[10] Chanchal K. Roy, James R. Cordy , Rainer Koschke, “Evaluation of code clone detection tools: A qualitative approach”, School of Computing, Queen's

University, Canada and University of Bremen, Germany, March 2009
[11] Tahira Khatoon, Priyansha Singh, Shikha Shukla”Abstract Syntax Tree Based Clone Detection for Java Projects” IOSR Journal of Engineering,Volume

2,Issue12,Dec 2012

