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Abstract: In this paper, we study the concept of strongly ( ĝ )* - closed sets and strongly ( ĝ )*-continuous functions  and check 
how they deal with the topological spaces and their sub-sets. We also read out how the strongly ( ĝ )*-closed sets and maps inter-
relates with other sets with a change or transformation in their properties.  
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I. INTRODUCTION 
Levine [4] introduced the class of g -closed sets in 1970. Veerakumar [5] introduced ĝ -closed sets in 1991. A. Gayathri [8] 
introduced the class of ( ĝ )* sets in 2014. The intention of this paper is to give the basic properties of strongly ( ĝ )*-closed set and 
strongly ( ĝ )*-continuous map and how they work in relation with other sets and maps. 

 
II. PRELIMINARIES 

We see the non-empty topological space (X, τ), a subset A of X and an open set U of X. We also see the terms of closure of A i.e. 
Cl(A) and interior of A i.e. int(A). 
A. Definition  2.1: Let A be a subset of a topological space (X, τ). The interior of A is defined as the union of all open sets 

contained in A. It is denoted by int(A). 
B. Definition  2.2: Let A be a subset of a topological space (X, τ). The closure of A is defined as the intersection of all closed sets 

containing A. It is denoted by cl(A). 
C. Definition  2.3: A subset A of the topological space (X, τ)  is called 
1) a pre-open set [7] if A   int(cl(A)) 
2) a pre-closed set [7] if cl(int(A))   A 
3) a semi-open set [4] if A   cl(int(A)) 
4) a semi-closed set [4] if int(cl(A))   A 
5) a semi-pre open set [1] if A   cl(int(cl(A))) 
6) a semi-pre closed set [1] if int(cl(int(A)))   A 

 
D. Definition  2.4: A subset A of a topological space (X, τ)  is called  
1) g-closed or generalized closed set [3]  if cl(A)   U whenever A   U and U is open in (X, τ). 
2) g*-closed set [5] if cl(A)   U whenever A   U and U is g-open in (X, τ). 
3) ĝ -closed set [6] if cl(A)   U whenever A   U and U is semi-open in      (X, τ). 
4) ( ĝ )*-closed set [8] if cl(A)   U whenever A   U and U is ĝ -open in    (X, τ). 
 
E.  Definition  2.5: A map f : (X, τ) → (Y, σ) is called 
1) g-continuous [2] if ݂ିଵ(V) is a g-closed set of (X, τ) for every closed set V of  (Y, σ). 
2) g*-continuous [5]  if ݂ିଵ(V) is a g*-closed set of (X, τ) for every closed set V of  (Y, σ). 
3) ( ĝ )*-continuous [8] if ݂ିଵ(V) is a ( ĝ )*-closed set of (X, τ) for every closed set V of  (Y, σ). 

 
III. BASIC PROPERTIES OF STRONGLY ( Ĝ )*-CLOSED SET 

A. Definition 3.1 
A subset ‘A’ of a topological space (X, τ) is said to be a strongly ( ĝ )*-closed set, if 
 cl(int(A))   U, whenever A   U and U is ĝ -open in X. 
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Theorem 3.2: 
Every closed set is strongly ( ĝ )* -closed. 
Proof Let (X, τ) be a topological space. 
And A   (X, τ) is a closed set. 
i.e. Cl(A) = A. 
To prove: A is strongly ( ĝ )*-closed. 
Let A   U and U be ĝ open. 
Then cl(A)   U. 
Also, cl(int(A))   cl(A) 
We get, cl(int(A))   cl(A)   U 
i.e. cl(int(A))   U, whenever A   U and U is ĝ open. 
A is strongly ( ĝ )*-closed. 

B. Theorem 3.3 
Every g-closed set is strongly ( ĝ )*-closed. 
1) Proof: Let A be a g-closed set. 
By the definition 2.4.1, 
Cl(A)   U, whenever A   U and U is open in (X, τ). 
To prove: A is strongly ( ĝ )*-closed. 
Let A   U and U is ĝ open. 
We’ve, cl(A)   U 
Also, cl(int(A))   cl(A) 
Then, cl(int(A))   cl(A)   U 
i.e. cl(int(A))   U, whenever A   U and U is ĝ open in (X, τ). 
A is strongly ( ĝ )*-closed. 
The converse of the above theorem need not be true as shown in the following example. 

C. Example 3.4 
Let X = {a, b, c} and τ = {ϕ, X, {a}, {a, c}} 
Closed sets are X, ϕ, {b, c}, {b}. 
Semi-open sets are {a, c}, {a, b}, {a}, ϕ, X. 
ĝ -open sets are {a, c}, {a}, ϕ, X. 
Strongly ( ĝ )*-closed sets are {b}, {c}, {a, b}, {b, c}, ϕ, X. 

g- closed sets are {b}, {a, b}, {b, c}, ϕ, X. 
A = {c} is a strongly ( ĝ )*-closed set but not g-closed. 
Hence, every strongly ( ĝ )*-closed set need not be g-closed. 

D. Theorem 3.5 
Every g*-closed set is strongly ( ĝ )*-closed. 
1) Proof: Let A be a g*-closed set. 
By the definition 2.4.2, 
Cl(A)   U, whenever A   U and U is g-open in (X,τ). 
To prove: A is strongly ( ĝ )*-closed. 
Let A   U and U is ĝ -open. 
We’ve, cl(A)   U 
Also, cl(int(A))   cl(A) 
Then, cl(int(A))   cl(A)   U 
i.e. cl(int(A))   U, whenever A   U and U is ĝ -open in (X, τ). 
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A is strongly ( ĝ )*-closed. 
The converse of the above theorem need not be true as shown in the following example. 

E. Example 3.6 
Let X = {a, b, c} and τ = {ϕ, X, {a}, {a, c}} 
Closed sets are X, ϕ, {b, c}, {b} 
 g-open sets are {a, c}, {c}, {a}, ϕ, X. 
g*-closed sets are {b}, {a, b}, {b, c}, ϕ, X. 
Strongly ( ĝ )*-closed sets are {b}, {c}, {a, b}, {b, c}, ϕ, X. 
A = {c} is a strongly ( ĝ )*-closed set but not g*-closed. 
Hence, every strongly ( ĝ )*-closed set need not be g*-closed.  

F. Theorem 3.7 
Every ( ĝ )*-closed set is strongly ( ĝ )*-closed. 
1) Proof:Let A be a ( ĝ )*-closed set. 
By the definition 2.4.4, 
Cl(A)   U, whenever A   U and U is ĝ -open in (X, τ). 
To prove: A is strongly ( ĝ )*-closed. 
Let A   U and U is ĝ-open. 
We’ve, cl(A)   U 
Also, cl(int(A))   cl(A) 
Then, cl(int(A))   cl(A)   U 
i.e. cl(int(A))   U, whenever A   U and U is open in (X, τ). 
A is strongly ( ĝ )*-closed. 
The converse of the above theorem need not be true as shown in the following example. 

G. Example 3.8: 
Let X = {a, b, c} and τ = {ϕ, X, {a}, {a, c}} 
Closed sets are X, ϕ, {b, c}, {b} 
g-open sets are {a, c}, {c}, {a}, ϕ, X. 
 ( ĝ )*-closed sets are {b}, {a, b}, {b, c}, ϕ, X. 
Strongly ( ĝ )*-closed sets are {b}, {c}, {a, b}, {b, c}, ϕ, X. 
A = {c} is a strongly ( ĝ )*-closed set but not ( ĝ )*-closed. 
Hence, every strongly ( ĝ )*-closed set need not be ( ĝ )*-closed. 
 

IV. BASIC PROPERTIES OF STRONGLY ( Ĝ )* -CLOSED CONTINUOUS MAPS 
A. Definition 4.1 
A map f : (X, τ) → (Y, σ) is called a strongly ( ĝ )*- continuous map if ݂ିଵ(V) is a strongly  
 ( ĝ )*-closed set in (X, τ) for every closed set V of (Y, σ). 

B. Theorem 4.2 
Every continuous map is strongly ( ĝ )*-continuous. 
1) Proof: Let f : (X, τ) → (Y, σ) be a continuous map. 
To prove: f  is strongly ( ĝ )*-continuous. 
Let V be a closed set in (Y, σ). 
Since, f  is continuous; there exists a closed set ݂ିଵ(V) in (X, τ). 
By theorem 3.2, 
“Every closed set is a strongly ( ĝ )* -closed.” 
Hence, ݂ିଵ(V) is a strongly ( ĝ )* -closed set in (X, τ). 
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 f  is strongly ( ĝ )*-continuous. 
The converse of the above theorem need not be true as shown in the following example. 

C. Example 4.3: 
Let X = Y = {a, b, c} 
And τ = {ϕ, X, {a, b}} 
Closed sets in (X, τ) are X, ϕ, {c}. 
And σ = {ϕ, Y, {b, c}} 
Closed sets in (Y, σ) are Y, ϕ, {a}. 
Let f : (X, τ) → (Y, σ) be an identity map. 
Semi-open sets are {a, b}, ϕ, X. 
ĝ -open sets are {a, b}, {a}, {b}, ϕ, X. 
Strongly ( ĝ )*-closed sets are {a}, {b}, {c}, {b, c}, {a, c}, ϕ, X. 
݂ିଵ{a} = {a} is a strongly ( ĝ )*-closed set in (X, τ) but not a closed set in (X, τ). 
Thus, the converse of the above theorem is not true. 
Hence, every strongly ( ĝ )*- continuous map need not be continuous. 

D. Theorem 4.4 
Every g-continuous map is strongly ( ĝ )*-continuous. 
1) Proof: Let f : (X, τ) → (Y, σ) be a continuous map. 
By the definition 2.5.1, 
݂ିଵ(V) is a g-closed set of (X, τ) for every closed set V of (Y, σ). 
To prove: f  is strongly ( ĝ )*-continuous. 
Let V be a closed set in (Y, σ). 
Since, f  is g-continuous; there exists a g-closed set ݂ିଵ(V) in (X, τ). 
By theorem 3.3, 
“Every g-closed set is strongly ( ĝ )*-closed.” 
Hence, ݂ିଵ(V) is a strongly ( ĝ )* -closed set in (X, τ). 
 f  is strongly ( ĝ )*-continuous. 
The converse of the above theorem need not be true as shown in the following example. 
 
E. Example 4.5 
Let X = Y = {a, b, c} 
And τ = {ϕ, X, {a, b}} 
Closed sets in (X, τ) are X, ϕ, {c}. 
And σ = {ϕ, Y, {b, c}} 
Closed sets in (Y, σ) are Y, ϕ, {a}. 
Let f : (X, τ) → (Y, σ) be an identity map. 
g- closed sets are {c}, {b, c}, {a, c}, ϕ, X. 
Strongly ( ĝ )*-closed sets in (X, τ) are {a}, {b}, {c}, {b, c}, {a, c}, ϕ, X. 
݂ିଵ{b} = {b} is a strongly ( ĝ )*-closed set in (X, τ) but not a g-closed set in (X, τ). 
Thus, the converse of the above theorem is not true. 
Hence, every strongly ( ĝ )*-continuous map need not be g-continuous. 
 
F. Theorem 4.6 
Every g*-continuous map is strongly ( ĝ )*-continuous. 
1) Proof: Let f : (X, τ) → (Y, σ) be a continuous map. 
By the definition 2.5.2, 
݂ିଵ(V) is a g*-closed set of (X, τ) for every closed set V of (Y, σ). 
To prove: f  is strongly ( ĝ )*-continuous. 
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Let V be a closed set in (Y, σ). 
Since, f is g*-continuous; there exists a g*-closed set ݂ିଵ(V) in (X, τ). 
By theorem 3.5, 
“Every g*-closed set is strongly ( ĝ )*-closed.” 
Hence, ݂ିଵ(V) is a strongly ( ĝ )* -closed set in (X, τ). 
 f  is strongly ( ĝ )*-continuous. 
The converse of the above theorem need not be true as shown in the following example. 
 
G. Example 4.7 
Let X = Y = {a, b, c} 
And τ = {ϕ, X, {a, b}} 
Closed sets in (X, τ) are X, ϕ, {c}. 
And σ = {ϕ, Y, {b, c}} 
Closed sets in (Y, σ) are Y, ϕ, {a}. 
Let f : (X, τ) → (Y, σ) be an identity map. 
g-open sets in (X, τ) are {a, b}, {a}, {b}, ϕ, X. 
g*-closed sets are {c}, {b, c}, {a, c}, ϕ, X. 
Strongly ( ĝ )*-closed sets in (X, τ) are {a}, {b}, {c}, {b, c}, {a, c}, ϕ, X. 
݂ିଵ{b} = {b} is a strongly ( ĝ )*-closed set in (X, τ) but not a g*-closed set in (X, τ). 
Thus, the converse of the above theorem is not true. 
Hence, every strongly ( ĝ )*-continuous map need not be g*-continuous. 

H. Theorem 4.8 
Every ( ĝ )*-continuous map is strongly ( ĝ )*-continuous. 
1) Proof: Let f : (X, τ) → (Y, σ) be a continuous map. 
By the definition 2.5.3, 
݂ିଵ(V) is a ( ĝ )*-closed set of (X, τ) for every closed set V of (Y, σ). 
To prove: f  is strongly ( ĝ )*-continuous. 
Let V be a closed set in (Y, σ). 
Since, f  is ( ĝ )*-continuous; there exists a ( ĝ )*-closed set ݂ିଵ(V) in (X, τ). 
By theorem 3.7, 
“Every ( ĝ )*-closed set is strongly ( ĝ )*-closed.” 
Hence, ݂ିଵ(V) is a strongly ( ĝ )* -closed set in (X, τ). 
 f  is strongly ( ĝ )*-continuous. 
The converse of the above theorem need not be true as shown in the following example. 

I. Example 4.9 
Let X = Y = {a, b, c} 
And τ = {ϕ, X, {a, b}} 
Closed sets in (X, τ) are X, ϕ, {c}. 
And σ = {ϕ, Y, {b, c}} 
Closed sets in (Y, σ) are Y, ϕ, {a}. 
Let f : (X, τ) → (Y, σ) be an identity map. 
ĝ -closed sets are {c}, {b, c}, {a, c}, ϕ, X. 
ĝ -open sets are {a, b}, {a}, {b}, ϕ, X. 
 ( ĝ )*-closed sets are {c}, {b, c}, {a, c}, ϕ, X. 
Strongly ( ĝ )*-closed sets in (X, τ) are {a}, {b}, {c}, {b, c}, {a, c}, ϕ, X. 
݂ିଵ{b} = {b} is a strongly ( ĝ )*-closed set in (X, τ) but not a ( ĝ )*-closed set in (X, τ). 
Thus, the converse of the above theorem is not true. 
Hence, every strongly ( ĝ )*-continuous map need not be ( ĝ )*-continuous. 
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III. CONCLUSION 
Hence, I would like to conclude my paper by giving the properties of strongly ( ĝ )*-closed set and strongly ( ĝ )*- continuous 
function. And also with further results and solutions we can bring in the comparison of strongly ( ĝ )*-closed set and function with 
other sets  and functions as well in a given topological space. 
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