

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: TPAM-2055 onferendelonth of publication: March 2018

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Strongly (ĝ)* Closed Sets In Topological Space

B. Dilshad¹, Ms. A. Kulandhai Therese²

¹PG student, Department of Mathematics, St. Joseph's College of Arts and Science for Women, Periyar University ²Assistant Professor, Department of Mathematics, St. Joseph's College of Arts and Science for Women, Periyar University.

Abstract: In this paper, we study the concept of strongly $(\hat{g})^*$ - closed sets and strongly $(\hat{g})^*$ -continuous functions and check how they deal with the topological spaces and their sub-sets. We also read out how the strongly $(\hat{g})^*$ -closed sets and maps interrelates with other sets with a change or transformation in their properties.

Key words: cl(A), int(A), $strongly (\hat{g})^*$ -closed set, g-closed set, g^* -closed set, $(\hat{g})^*$ -closed set, $strongly (\hat{g})^*$ -continuous map, g-continuous map, $(\hat{g})^*$ -continuous map

I. INTRODUCTION

Levine [4] introduced the class of g -closed sets in 1970. Veerakumar [5] introduced \hat{g} -closed sets in 1991. A. Gayathri [8] introduced the class of (\hat{g})* sets in 2014. The intention of this paper is to give the basic properties of strongly (\hat{g})*-closed set and strongly (\hat{g})*-continuous map and how they work in relation with other sets and maps.

II. PRELIMINARIES

We see the non-empty topological space (X, τ) , a subset A of X and an open set U of X. We also see the terms of closure of A i.e. Cl(A) and interior of A i.e. int(A).

- A. Definition 2.1: Let A be a subset of a topological space (X, τ) . The interior of A is defined as the union of all open sets contained in A. It is denoted by int(A).
- B. Definition 2.2: Let A be a subset of a topological space (X, τ) . The closure of A is defined as the intersection of all closed sets containing A. It is denoted by cl(A).
- C. Definition 2.3: A subset A of the topological space (X, τ) is called
- 1) a pre-open set [7] if $A \subseteq int(cl(A))$
- 2) a pre-closed set [7] if $cl(int(A)) \subseteq A$
- 3) a semi-open set [4] if $A \subseteq cl(int(A))$
- 4) a semi-closed set [4] if $int(cl(A)) \subseteq A$
- 5) a semi-pre open set [1] if $A \subseteq cl(int(cl(A)))$
- 6) a semi-pre closed set [1] if $int(cl(int(A))) \subseteq A$
- D. Definition 2.4: A subset A of a topological space (X, τ) is called
- 1) g-closed or generalized closed set [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 2) g*-closed set [5] if cl(A) \subseteq U whenever A \subseteq U and U is g-open in (X, τ).
- 3) \hat{g} -closed set [6] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ).
- 4) (\hat{g})*-closed set [8] if cl(A) \subseteq U whenever A \subseteq U and U is \hat{g} -open in (X, τ).
- *E.* Definition 2.5: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called
- 1) g-continuous [2] if $f^{-1}(V)$ is a g-closed set of (X, τ) for every closed set V of (Y, σ) .
- 2) g*-continuous [5] if $f^{-1}(V)$ is a g*-closed set of (X, τ) for every closed set V of (Y, σ) .
- 3) (\hat{g})*-continuous [8] if $f^{-1}(V)$ is a (\hat{g})*-closed set of (X, τ) for every closed set V of (Y, σ).

III. BASIC PROPERTIES OF STRONGLY (\hat{G})*-CLOSED SET

A. Definition 3.1

A subset 'A' of a topological space (X, τ) is said to be a strongly $(\hat{g})^*$ -closed set, if $cl(int(A)) \subseteq U$, whenever $A \subseteq U$ and U is \hat{g} -open in X.

Theorem 3.2: Every closed set is strongly (\hat{g})* -closed. Proof Let (X, τ) be a topological space. And A \subseteq (X, τ) is a closed set. i.e. Cl(A) = A. To prove: A is strongly (\hat{g})*-closed. Let A \subseteq U and U be \hat{g} open. Then cl(A) \subseteq U. Also, cl(int(A)) \subseteq cl(A) We get, cl(int(A)) \subseteq cl(A) \subseteq U i.e. cl(int(A)) \subseteq U, whenever A \subseteq U and U is \hat{g} open. \therefore A is strongly (\hat{g})*-closed.

B. Theorem 3.3

Every g-closed set is strongly (\hat{g})*-closed. 1) Proof: Let A be a g-closed set. By the definition 2.4.1, $Cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) . To prove: A is strongly (\hat{g})*-closed. Let $A \subseteq U$ and U is \hat{g} open. We've, $cl(A) \subseteq U$ Also, $cl(int(A)) \subseteq cl(A)$ Then, $cl(int(A)) \subseteq cl(A) \subseteq U$ i.e. $cl(int(A)) \subseteq U$, whenever $A \subseteq U$ and U is \hat{g} open in (X, τ) . $\therefore A$ is strongly (\hat{g})*-closed.

The converse of the above theorem need not be true as shown in the following example.

C. Example 3.4 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ Closed sets are X, ϕ , $\{b, c\}, \{b\}$. Semi-open sets are $\{a, c\}, \{a, b\}, \{a\}, \phi, X$. \hat{g} -open sets are $\{a, c\}, \{a\}, \phi, X$. Strongly (\hat{g})*-closed sets are $\{b\}, \{c\}, \{a, b\}, \{b, c\}, \phi, X$. g- closed sets are $\{b\}, \{a, b\}, \{b, c\}, \phi, X$. $\therefore A = \{c\}$ is a strongly (\hat{g})*-closed set need not be g-closed. Hence, every strongly (\hat{g})*-closed set need not be g-closed.

D. Theorem 3.5 Every g*-closed set is strongly (\hat{g})*-closed. 1) Proof: Let A be a g*-closed set. By the definition 2.4.2, Cl(A) \subseteq U, whenever A \subseteq U and U is g-open in (X, τ). To prove: A is strongly (\hat{g})*-closed. Let A \subseteq U and U is \hat{g} -open. We've, cl(A) \subseteq U Also, cl(int(A)) \subseteq cl(A) Then, cl(int(A)) \subseteq cl(A) \subseteq U i.e. cl(int(A)) \subseteq U, whenever A \subseteq U and U is \hat{g} -open in (X, τ).

 \therefore A is strongly (\hat{g})*-closed. The converse of the above theorem need not be true as shown in the following example.

E. Example 3.6

Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ Closed sets are X, ϕ , $\{b, c\}, \{b\}$ g-open sets are $\{a, c\}, \{c\}, \{a\}, \phi, X.$ g*-closed sets are $\{b\}, \{a, b\}, \{b, c\}, \phi, X.$ Strongly (\hat{g})*-closed sets are $\{b\}, \{c\}, \{a, b\}, \{b, c\}, \phi, X.$ $\therefore A = \{c\}$ is a strongly (\hat{g})*-closed set but not g*-closed. Hence, every strongly (\hat{g})*-closed set need not be g*-closed.

F. Theorem 3.7 Every (\hat{g})*-closed set is strongly (\hat{g})*-closed. 1) Proof:Let A be a (\hat{g})*-closed set. By the definition 2.4.4, Cl(A) \subseteq U, whenever A \subseteq U and U is \hat{g} -open in (X, τ). To prove: A is strongly (\hat{g})*-closed. Let A \subseteq U and U is \hat{g} -open. We've, cl(A) \subseteq U Also, cl(int(A)) \subseteq cl(A) Then, cl(int(A)) \subseteq cl(A) \subseteq U i.e. cl(int(A)) \subseteq U, whenever A \subseteq U and U is open in (X, τ). \therefore A is strongly (\hat{g})*-closed. The converse of the above theorem need not be true as shown in the following example.

G. Example 3.8: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, c\}\}$ Closed sets are X, ϕ , $\{b, c\}, \{b\}$ g-open sets are $\{a, c\}, \{c\}, \{a\}, \phi, X.$ (\hat{g})*-closed sets are $\{b\}, \{a, b\}, \{b, c\}, \phi, X.$ Strongly (\hat{g})*-closed sets are $\{b\}, \{c\}, \{a, b\}, \{b, c\}, \phi, X.$ $\therefore A = \{c\}$ is a strongly (\hat{g})*-closed set but not (\hat{g})*-closed. Hence, every strongly (\hat{g})*-closed set need not be (\hat{g})*-closed.

IV. BASIC PROPERTIES OF STRONGLY (\hat{G})* -CLOSED CONTINUOUS MAPS

A. Definition 4.1 A map $f: (X, \tau) \to (Y, \sigma)$ is called a strongly $(\hat{g})^*$ - continuous map if $f^{-1}(V)$ is a strongly $(\hat{g})^*$ -closed set in (X, τ) for every closed set V of (Y, σ) . B. Theorem 4.2 Every continuous map is strongly $(\hat{g})^*$ -continuous. 1) Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a continuous map. To prove: f is strongly $(\hat{g})^*$ -continuous. Let V be a closed set in (Y, σ) . Since, f is continuous; there exists a closed set $f^{-1}(V)$ in (X, τ) . By theorem 3.2, "Every closed set is a strongly $(\hat{g})^*$ -closed." Hence, $f^{-1}(V)$ is a strongly $(\hat{g})^*$ -closed set in (X, τ) .

 $\therefore f$ is strongly (\hat{g})*-continuous.

The converse of the above theorem need not be true as shown in the following example.

C. Example 4.3: Let $X = Y = \{a, b, c\}$ And $\tau = \{\phi, X, \{a, b\}\}$ Closed sets in (X, τ) are $X, \phi, \{c\}$. And $\sigma = \{\phi, Y, \{b, c\}\}$ Closed sets in (Y, σ) are $Y, \phi, \{a\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an identity map. Semi-open sets are $\{a, b\}, \phi, X$. \hat{g} -open sets are $\{a, b\}, \phi, X$. \hat{g} -open sets are $\{a, b\}, \{a\}, \{b\}, \phi, X$. Strongly $(\hat{g})^*$ -closed sets are $\{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}, \phi, X$. $\therefore f^{-1}\{a\} = \{a\}$ is a strongly $(\hat{g})^*$ -closed set in (X, τ) but not a closed set in (X, τ) . Thus, the converse of the above theorem is not true. Hence, every strongly $(\hat{g})^*$ - continuous map need not be continuous.

D. Theorem 4.4 Every g-continuous map is strongly (\hat{g})*-continuous. 1) Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be a continuous map. By the definition 2.5.1, $f^{-1}(V)$ is a g-closed set of (X, τ) for every closed set V of (Y, σ) . To prove: f is strongly (\hat{g})*-continuous. Let V be a closed set in (Y, σ) . Since, f is g-continuous; there exists a g-closed set $f^{-1}(V)$ in (X, τ) . By theorem 3.3, "Every g-closed set is strongly (\hat{g})*-closed." Hence, $f^{-1}(V)$ is a strongly (\hat{g})*-closed set in (X, τ) . $\therefore f$ is strongly (\hat{g})*-continuous. The converse of the above theorem need not be true as shown in the following example. *E. Example 4.5*

Let $X = Y = \{a, b, c\}$ And $\tau = \{\phi, X, \{a, b\}\}$ Closed sets in (X, τ) are $X, \phi, \{c\}$. And $\sigma = \{\phi, Y, \{b, c\}\}$ Closed sets in (Y, σ) are $Y, \phi, \{a\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be an identity map. g- closed sets are $\{c\}, \{b, c\}, \{a, c\}, \phi, X$. Strongly $(\hat{g})^*$ -closed sets in (X, τ) are $\{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}, \phi, X$. $\therefore f^{-1}\{b\} = \{b\}$ is a strongly $(\hat{g})^*$ -closed set in (X, τ) but not a g-closed set in (X, τ) . Thus, the converse of the above theorem is not true. Hence, every strongly $(\hat{g})^*$ -continuous map need not be g-continuous.

F. Theorem 4.6

Every g*-continuous map is strongly (\hat{g})*-continuous. 1) *Proof:* Let $f: (X, \tau) \to (Y, \sigma)$ be a continuous map. By the definition 2.5.2, $f^{-1}(V)$ is a g*-closed set of (X, τ) for every closed set V of (Y, σ) . To prove: f is strongly (\hat{g})*-continuous.

Let V be a closed set in (Y, σ) . Since, f is g*-continuous; there exists a g*-closed set $f^{-1}(V)$ in (X, τ) . By theorem 3.5, "Every g*-closed set is strongly $(\hat{g})^*$ -closed." Hence, $f^{-1}(V)$ is a strongly $(\hat{g})^*$ -closed set in (X, τ) . $\therefore f$ is strongly $(\hat{g})^*$ -continuous. The converse of the above theorem need not be true as shown in the following example.

G. Example 4.7 Let $X = Y = \{a, b, c\}$ And $\tau = \{\phi, X, \{a, b\}\}$ Closed sets in (X, τ) are $X, \phi, \{c\}$. And $\sigma = \{\phi, Y, \{b, c\}\}$ Closed sets in (Y, σ) are $Y, \phi, \{a\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an identity map. g-open sets in (X, τ) are $\{a, b\}, \{a\}, \{b\}, \phi, X$. g*-closed sets are $\{c\}, \{b, c\}, \{a, c\}, \phi, X$. Strongly (\hat{g}) *-closed sets in (X, τ) are $\{a\}, \{b\}, \{c\}, \{c\}, \{b, c\}, \{a, c\}, \phi, X$. $\therefore f^{-1}\{b\} = \{b\}$ is a strongly (\hat{g}) *-closed set in (X, τ) but not a g*-closed set in (X, τ) . Thus, the converse of the above theorem is not true. Hence, every strongly (\hat{g}) *-continuous map need not be g*-continuous.

H. Theorem 4.8 Every (\hat{g})*-continuous map is strongly (\hat{g})*-continuous. *I) Proof:* Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a continuous map. By the definition 2.5.3, $f^{-1}(V)$ is a (\hat{g})*-closed set of (X, τ) for every closed set V of (Y, σ) . To prove: f is strongly (\hat{g})*-continuous. Let V be a closed set in (Y, σ) . Since, f is (\hat{g})*-continuous; there exists a (\hat{g})*-closed set $f^{-1}(V)$ in (X, τ) . By theorem 3.7, "Every (\hat{g})*-closed set is strongly (\hat{g})*-closed." Hence, $f^{-1}(V)$ is a strongly (\hat{g})*-closed set in (X, τ) . $\therefore f$ is strongly (\hat{g})*-continuous. The converse of the above theorem need not be true as shown in the following example.

1. Example 4.9 Let $X = Y = \{a, b, c\}$ And $\tau = \{\phi, X, \{a, b\}\}$ Closed sets in (X, τ) are $X, \phi, \{c\}$. And $\sigma = \{\phi, Y, \{b, c\}\}$ Closed sets in (Y, σ) are $Y, \phi, \{a\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an identity map. \hat{g} -closed sets are $\{c\}, \{b, c\}, \{a, c\}, \phi, X$. \hat{g} -open sets are $\{a, b\}, \{a\}, \{b\}, \phi, X$. $(\hat{g})^*$ -closed sets are $\{c\}, \{b, c\}, \{a, c\}, \phi, X$. Strongly $(\hat{g})^*$ -closed sets in (X, τ) are $\{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}, \phi, X$. $\therefore f^{-1}\{b\} = \{b\}$ is a strongly $(\hat{g})^*$ -closed set in (X, τ) but not a $(\hat{g})^*$ -closed set in (X, τ) . Thus, the converse of the above theorem is not true. Hence, every strongly $(\hat{g})^*$ -continuous map need not be $(\hat{g})^*$ -continuous.

III. CONCLUSION

Hence, I would like to conclude my paper by giving the properties of strongly (\hat{g})*-closed set and strongly (\hat{g})*- continuous function. And also with further results and solutions we can bring in the comparison of strongly (\hat{g})*-closed set and function with other sets and functions as well in a given topological space.

REFERENCES

- [1] D. Andrijevic, semi- preopen sets, Mat. Vesnik, 38(1)(1986),24-32.
- [2] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi. Univ. Ser.A.Math., 12(1991), 5-1
- [3] N. Levine , generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2) (1970), 89-96
- [4] N. Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [5] M.K.R.S. Veerakumar, Between closed sets and closed g sets, Mem. Fac. Sci. Kochi. Univ. Ser.A, Math., 17 (1996), 33-42.
- [6] M.K.R.S. Veerakumar, closed \hat{g} sets and GIC-functions, Indian J.Math., 43 (2) (2001) 231-247.
- [7] A.S. Mashhour, M.E. Abd EI-Monsef and S.N.EI-Deeb, on pre-continuous and weak pre-continuous mappings proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [8] M. Pauline Mary Helen, A Gayathri M.Sc., (ĝ)* closed sets in topological spaces, IJMTT, Volume-6, (feb 2014) ISSN: 2231-5373

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)