

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: TPAM-2055 onferendelonth of publication: March 2018

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

ε-Best Approximation and E- Orthogonality

R.S. Karunya

Assistant Professor, Department of Mathematics, St. Joseph's College of Arts and Science for Women, Hosur.

Abstract: The purpose of this paper is to study the concept of ε -Best approximation and ε -orthogonality. I discussed their properties and noted that are similar to the properties of best approximation. Keywords: ε -Best approximation, normed linear spaces, proximinal, ε -orthogonality, convex.

I. INTRODUCTION

The theory of best approximation is an important topic in functional analysis. It is a very extensive field which has various applications

What do we mean by "Best approximation" in normed linear spaces?

To explain this, let X be a normed linear space, and let G be a nonempty subset of X. An element $g_0 \in G$ is called a best approximation to x from G if g_0 is closest to x from among all the elements of G.

That is, $\|\mathbf{x}-\mathbf{g}_0\| \leq \|\mathbf{x}-\mathbf{g}\|$ for all $\mathbf{g} \in \mathbf{G}$.

The set of all such elements $g_0 \in G$ are called a *best approximation* to $x \in X$ is denoted by $P_G(x)$.

If $P_G(x)$ contains at least one element, then the subset G is called a *proximinal* set. If

each element $x \in X$ has a unique best approximation in G, then G is called a *Chebyshev* set of X.

The theory of approximation is mainly concerned with the following fundamental questions.

- 1) (Existence of best approximation) Which subsets are proximinal?
- 2) (Uniqueness of best approximation) Which subsets are Chebyshev?
- 3) (Characterization of best approximation) How to recognize when a given $y \in G$ is a best approximation to x or not?
- *4)* (*Error of approximation*) How to compute the error of approximation d(x, G)?
- 5) (*Computation of best approximation*) How to describe some useful algorithms for actually computing best approximation?
- 6) (*Continuity of best approximation*) How does the set of all best approximation vary as a function of x or (G)?

A. Definition 1.1[1]

Let G be a nonempty subset of a real normed linear space E and let an element $f \in E$ be given. The problem of *best approximation* is to determine an element $g_f \in G$ such that

 $\| \mathbf{f} - \mathbf{g}_{\mathbf{f}} \| = \inf_{\mathbf{g} \in \mathbf{G}} \| \mathbf{f} - \mathbf{g} \|$

such an element is called a best approximation to f from G, and

 $d(f, G) = \inf_{g \in G} ||f - g||$ is called the *minimal deviation* off from G.

The set of all elements $g_0 \in G$ that are called best approximation to $x \in X$ is

 $P_G(x) = \{ \ g_0 \in G \colon \parallel x \text{ - } g_0 \parallel \leq \parallel x \text{ - } g \parallel \text{ for all } g \in G \ \}$

Hence P_G defines a mapping from X into the power set of G is called the *metric projection* onto G, (other names nearest point mapping, proximity map)

B. Remark 1.2[1]

The set $P_G(x)$ of all best approximation to $x \ \varepsilon X$ can be written as

 $P_G(x) = \{g_0 \in G: \| x - g_0 \| = d(x, G)\}$

C. Definition 1.3.[3] A set S, in a linear space is <i>convex</i> .if $s_1, s_2 \in S$ implies that	
$\lambda_1s_1+\lambda_2s_2\varepsilonS$	
If λ_1 and λ_2 are non negative and $\lambda_1 + \lambda_2 = 1$	
If S is empty or consists of one point, then it is clearly <i>convex</i>	
D. Definition 1.4[1] If $P_G(x)$ contains at least one element, then the subset G is called a <i>proximinal set</i> .	
In other words, if $P_G(x) \neq \varphi$ then G is called a <i>proximinal set</i>	
The term <i>proximinal set</i> (is a combination of proximity and maximal)	
<i>E.</i> Definition 1.5[1] (Quasi-Orthogonal Set) Let X be a normed linear space, and G a nonempty subset of X. Then we say that $\perp_B \hat{G}$ for every $g \in G$.	G is <i>quasi-orthogonal set</i> if $G \perp_B \hat{G}$, that is g
where $\hat{G} = \{x \in X ; x = d(x, G)\} = \{x \in X : x \perp_B G\}.$	
F. Remark 1.6[1]	

In a Hilbert space, any closed subspace is quasi-orthogonal. *Proof:*

Let H be a Hilbert space and G a closed subspace of H. Then $\hat{G} = G^{\perp} = \{y \in H : \langle x, y \rangle = 0, \text{ for all } x \in G\}$. Then $G \perp \hat{G}$. Therefore G is quasi-orthogonal subspace of H.

G. Definition 1.7[2]

Let X be a normed linear space and G be a subset of X, and $\varepsilon > 0$. A point $g_0 \in G$ is said to be ε -best approximation for $x \in X$ if and only if

 $\label{eq:constraint} \| \ x - g_0 \ \| \leq \| \ x - \ g \ \| + \epsilon \ for \ all \ g \ \varepsilon \ G$

H. Remark 1.8[2] For $x \in X$, the set of all ε -Best approximation of x in G is denoted by $P_G(x, \varepsilon)$, in other words, $P_G(x, \varepsilon) = \{g_0 \in G: ||x - g_0|| \le ||x - g|| + \varepsilon \text{ for all } g \in G\}.$

I. Theorem 1.9[2]

Let G be a subspace of a normed linear space X. Then $P_G(x, \varepsilon)$ is bounded. *Proof*:

Let $g_1, g_2 \in P_G(x, \epsilon)$, then $||x - g_1|| \le ||x - g|| + \epsilon$ for all $g \in G$, and

 $\label{eq:constraint} \|\ x - g_2\ \| \leq \|\ x - g\ \| + \epsilon \ \text{for all} \ g \in G$

Now, $\parallel g_1 - g_2 \parallel = \parallel g_1 - x + x - g_2 \parallel \le \parallel x - g_1 \parallel + \parallel x - g_2 \parallel$

$$\leq \|\mathbf{x} - \mathbf{g}\| + \varepsilon + \|\mathbf{x} - \mathbf{g}\| + \varepsilon = 2\|\mathbf{x} - \mathbf{g}\| + 2\varepsilon = \mathbf{k},$$

so we have $\|g_1 - g_2\| \le k$ where $k = 2d(x, G) + 2\epsilon$. Therefore, $P_G(x, \epsilon)$ is bounded. Hence the proof

J. Theorem 1.10[2] Let G be a subspace of normed linear space X, and x \in X. Then P_G(x, ε) is convex. *Proof:* Let $g_1, g_2 \in P_G(x, \varepsilon)$, and $0 \le \lambda \le 1$, then $||x - g_1|| \le ||x - g|| + \varepsilon$ for all $g \in G$, and $\| x - g_2 \| \le \| x - g \| + \varepsilon$ for all $g \in G$ Now, $\| x - (\lambda g_1 + (1 - \lambda) g_2) \| = \| x - \lambda g_1 - g_2 + \lambda g_2 \|$ $= \| \mathbf{x} - \lambda \mathbf{g}_1 - \mathbf{g}_2 + \lambda \mathbf{g}_2 + \lambda \mathbf{x} - \lambda \mathbf{x} \|$ $= \| \lambda(x - g_1) + (1 - \lambda)(x - g_2) \|$ $\leq \| x - g_1 \| + (1 - \lambda) \| x - g_2 \|$ $\leq \lambda(\|\mathbf{x} - \mathbf{g}\| + \varepsilon) + (1 - \lambda)(\|\mathbf{x} - \mathbf{g}\| + \varepsilon)$ $= \| \mathbf{x} - \mathbf{g} \| + \varepsilon.$ Thus, $\lambda g_1 + (1 - \lambda)g_2 \in P_G(x, \varepsilon)$. Hence $P_G(x, \varepsilon)$ is convex. Hence the proof *K.* Definition 1.11.[2] (ε-orthogonality) Let X be a normed linear space, $\varepsilon > 0$, and x, y ϵ X. We call x is ε - orthogonal to y and is denoted by x \perp_{ε} y if and only if $\| \mathbf{x} + \boldsymbol{\alpha} \mathbf{y} \| + \varepsilon \ge \| \mathbf{x} \|$ for all scaler $\boldsymbol{\alpha}$ with $| \boldsymbol{\alpha} | \le 1$ For subsets G_1 , G_2 of X, $G_1 \perp_{\varepsilon} G_2$ if and only if, $g_1 \perp_{\varepsilon} g_2$ for all $g_1 \in G_1$, $g_2 \in G_2$. L. Theorem: 1.12[2] Let X be a normed linear space, G be a subspace of X, and $\varepsilon > 0$. Then for all x ε X, $g_0 \in P_G(x, \varepsilon)$ if and only if $(x - g_0) \perp_{\varepsilon} G$. Proof: (=>) Suppose $g_0 \in P_G(x, \varepsilon)$. Put $g_1 = g_0 - \alpha g$ for $g \in G$ and $|\alpha| \leq 1$. Since $g_0 \in P_G(x, \varepsilon)$ and $g_1 \in G$ so, then, $||x - g_0|| \le ||x - g_1|| + \varepsilon$, then $\|\mathbf{x} - \mathbf{g}_0\| \le \|\mathbf{x} - (\mathbf{g}_0 - \alpha \mathbf{g})\| + \varepsilon$, and this implies that $\|\mathbf{x}-\mathbf{g}_0\| \leq \|(\mathbf{x}-\mathbf{g}_0)+\alpha \mathbf{g}\| + \varepsilon.$ Therefore, $(x - g_0) \perp_{\varepsilon} G$. $(\langle =)$ Let $(x - g_0) \perp_{\varepsilon} G$, then for all α with $|\alpha| \leq 1$ and $g_1 \in G$ we have, $\| x - g_0 \| \leq \| x - g_0 + \alpha g_1 \| + \epsilon$ For any $g \in G$ by putting $g_1 = g_0 - g$ and $\alpha = 1$, the last inequality implies, $\|\mathbf{x} - \mathbf{g}_0\| \leq \|\mathbf{x} - \mathbf{g}\| + \varepsilon$ Therefore, $g_0 \in P_G(x, \varepsilon)$ Hence the proof M. Notation 1.13 Let X be a normed linear space, and G a subspace of X, and for $\varepsilon > 0$, let $P_{G^{-1}}(0, \varepsilon) = \{x \in X : ||x|| \le ||x - g|| + \varepsilon \text{ for all } g \in G\} = \{x \in X : x \perp_{\varepsilon} G\}$ Then, $\hat{G}_{\varepsilon} = \{x \in X : x \perp_{\varepsilon} G\}.$ N. Lemma 1.14[2] Let G be a subspace of a normed linear space X. Then for all $x \in X$ and all $\varepsilon > 0$, we have, $g_0 \in P_G(x, \varepsilon)$ if and only if $(x - g_0) \in \hat{G}_{\varepsilon}$ **Proof:** $g_0 \in P_G(x, \varepsilon)$ if and only if by [Theorem1.12], $(x - g_0) \perp_{\varepsilon} \hat{G}_{\varepsilon}$ if and only if $(x - g_0) \in \hat{G}_{\varepsilon}$. O. Corollary 1.15 Let G be a subspace of a normed linear space X, and let $\varepsilon > 0$, x ϵ X. Then, $P_G(x, \varepsilon) = G \cap (x - \hat{G}_{\varepsilon})$ Proof:

 $\begin{array}{l} g_0 \in G \cap (x-\hat{G}_\epsilon) \text{ if and only if } g_0 \in G, \text{ and } g_0 \in (x-\hat{G}_\epsilon) \text{ if and only if} \\ g_0 \in G \text{ and } g_0 = x-\hat{g}, \text{ where } \hat{g} \in \hat{G}_\epsilon \text{ if and only if } g_0 \in G, \ \hat{g} = (x-g_0) \in \hat{G}_\epsilon \\ \text{ if and only if } g_0 \in P_G(x, \epsilon) \text{ by [Lemma 1.14].} \\ \text{ Therefore, } P_G(x, \epsilon) = G \cap (x-\hat{G}_\epsilon) \\ \text{ Hence the proof} \end{array}$

P. Theorem 1.16

Let G be a subspace of a normed linear space X, $\varepsilon > 0$, and $\varepsilon \ge \alpha$. Then, $\hat{G} \subseteq \hat{G}_{\alpha} \subseteq \hat{G}_{\varepsilon}$, and therefore $\bigcap_{\varepsilon > 0} \hat{G}_{\varepsilon} = \hat{G}$ Proof: Let $x \in \hat{G}$, then $||x|| \le ||x - g||$ for all $g \in G$. Now $\|\mathbf{x}\| \leq \|\mathbf{x} - \mathbf{g}\| \leq \|\mathbf{x} - \mathbf{g}\| + \alpha \ [\alpha > 0]$, so, we have $\mathbf{x} \in \hat{\mathbf{G}}_{\alpha}$. Hence $\hat{G} \underline{C} \hat{G}_{\alpha} \dots \dots \dots \dots (1)$ Let $x \in \hat{G}_{\alpha}$, then $\|x\| \le \|x - g\| + \alpha \le \|x - g\| + \epsilon [\epsilon > \alpha]$, this implies that $\mathbf{x} \in \hat{\mathbf{G}}_{\varepsilon}$, and so, $\hat{\mathbf{G}}_{\alpha} \subseteq \hat{\mathbf{G}}_{\varepsilon}$(2) (1) and (2) together imply that $\hat{G} \underline{C} \hat{G}_{\alpha} \underline{C} \hat{G}_{\epsilon}$, Now, we show $\bigcap_{\varepsilon > 0} \hat{G}_{\varepsilon} = \hat{G}$ From above we have $\hat{G} \subset \bigcap_{\epsilon > 0} \hat{G}_{\epsilon}$ conversely, let $x \in \bigcap_{\epsilon > 0} \hat{G}_{\epsilon}$, Then for all $\varepsilon > 0$, $0 \le ||x|| \le ||x - g|| + \varepsilon$ for all $g \in G$, then for all $n \in N$, $0 \leq \parallel x \parallel \, \leq \, \parallel x - g \parallel \, + \frac{1}{n} \, \text{for all } g \in G:$ As $n \to \infty$, $\|x\| \le \|x - g\|$ for all $g \in G$, then $x \in \hat{G}$, and so, $\bigcap_{\epsilon > 0} \hat{G}_{\epsilon} \underline{C} \hat{G}$ Therefore $\bigcap_{\varepsilon > 0} \hat{G}_{\varepsilon} = \hat{G}$ Hence the proof.

Q. Lemma 1.17

Let G be a subspace of a normed linear space X. Then.

- 1) If $\varepsilon > 0$, x, g \in X and x \perp_{ε} g, then x \perp_{δ} g for all $\delta \ge \varepsilon$.
- 2) If x, g \in X and x \perp_B g, then x \perp_{ϵ} g for all $\epsilon > 0$.
- 3) If x ∈ X, and ε > 0, then 0 ⊥_ε x, x ⊥_ε 0.
 4) If x ⊥_ε g and |β| ≤ 1, then β x ⊥_ε β g.

Proof:

```
(a) Let \varepsilon > 0, x, g \epsilon X and x \perp_{\varepsilon} g, then by [Definition 1.11] we have
    \| x \| \le \| x + \alpha g \| + \varepsilon, where | \alpha | \le 1 and \varepsilon > 0
  Then, \| x \| \le \| x + \alpha g \| + \varepsilon \le \| x + \alpha g \| + \delta, [since \delta \ge \varepsilon]
  Therefore, x \perp_{\delta} g
 (b) Let x, g \in X and x \perp_B g, then ||x|| \leq ||x + \alpha g|| for all \alpha \in \mathbb{R}
 Since \varepsilon > 0, then \|\mathbf{x}\| \le \|\mathbf{x} + \alpha \mathbf{g}\| \le \|\mathbf{x} + \alpha \mathbf{g}\| + \varepsilon for all \|\alpha| \le 1
 Hence x \perp_{\varepsilon} g for all \varepsilon > 0
 (c) Let x \in X and \varepsilon > 0, then || 0 || \le || 0 + \alpha x || + \varepsilon, and so 0 \perp_{\varepsilon} x.
  We have also \| x \| \le \| x \| + \varepsilon, then \| x \| \le \| x + \alpha 0 \| + \varepsilon,
   Hence x \perp_{\varepsilon} 0.
(d) Let x \perp_{\varepsilon} g, and |\beta| < 1, then ||x|| \le ||x + \alpha g|| + \varepsilon.
     Multiply both sides by |\beta|,
      we get |\beta| \|x\| \le \|\beta x + \beta \alpha g\| + |\beta| \varepsilon
 \leq \| \beta x + \alpha_1 g \| + \varepsilon, and so
 \|\beta x\| \le \|\beta x + \alpha_1 g\| + \varepsilon
 Therefore, \beta \mathbf{x} \perp_{\varepsilon} \beta \mathbf{g}
                  Hence the proof
```

 $\begin{array}{l} \textit{R. Theorem 1.18} \\ \text{Let } G \text{ be a subspace of a normed linear space } X. \text{ If } x \in X, \epsilon > 0 \\ \text{and } \delta \geq \epsilon, \text{ then } P_G(x, \epsilon) \underbrace{\Gamma} P_G(x, \delta). \\ \textit{Proof:} \\ \text{Let } g_0 \in P_G(x, \epsilon). \text{ Then by [Definition 1.7], we have} \\ \parallel x - g_0 \parallel \leq \parallel x - g \parallel + \epsilon \text{ for all } g \in G \text{ and } \epsilon > 0 \\ \text{Then } \parallel x - g_0 \parallel \leq \parallel x - g \parallel + \epsilon \leq \parallel x - g \parallel + \delta \\ \text{[since } \delta > \epsilon\text{], then, } g_0 \in P_G(x, \delta). \\ \text{Therefore } P_G(x, \epsilon) \underbrace{\Gamma} P_G(x, \delta) \\ \text{Hence the proof} \end{array}$

II. CONCLUSION

Here, I conclude my paper as ε -Best approximation and ε - orthogonality has the properties which are similar to the properties of best approximation.

REFERENCE

- [1] Mazaheri H, Maalek Ghaini F.m, 'Quasi -Orthogonality of the best approximation sets', Non linear Analysis ,65534-537(2006)
- [2] White.A,2-Banach Spacs,Math.Nachr,42(1969),43-60
- [3] Rivlin.Theodore J 'The Approximation of Function' 1969

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)