Power Generation from IC Engine Exhaust Gases

Basava Raj Y¹, Dhanush T S², Gagan K³, Jayanth J⁴
¹, ², ³, ⁴ Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology

Abstract: Here we are modifying an automobile’s exhaust for producing power using turbines. Nowadays in automobile field many new innovating concepts are being developed. We are using the power from vehicle exhaust to generate the electricity which can be stored in battery for the later consumption. In this project, we are demonstrating a concept of generating power in a vehicle exhaust by the usage of turbine and thermoelectric module. Here we are placing a turbine in the path of exhaust in the silencer. An engine is placed in the frame along with exhaust manifold. The turbine is connected to a dc generator, which is used to generate power. Depending upon the airflow the turbine will start rotating, and then the generator will also start to rotate. A generator is a device which is used to convert the kinetic energy into electrical energy. A thermoelectric chip is placed on exhaust pipe with suitable clamping. Thermoelectric module consists of two dissimilar thermoelectric materials joined at their ends: an n-type (negatively charged); and a p-type (positively charged) semiconductors. A direct electric current will flow in the circuit when there is a temperature difference between the two materials. The generated power is stored to the battery. The rectified voltage can be inverted and can be used in various forms of utilities. The battery power can be consumed for the user’s comfort.

Keywords: Peltier chip, Thermoelectric generator, DC generator, IC engine, Turbine, Frame.

I. INTRODUCTION

Energy conservation is a burning issue currently. There is a need for systems for generating electrical energy with high efficiency and minimum environmental pollution. Conventional coal and nuclear plants generally achieve only about 35 percent efficiency. By efficiency, there is meant the amount of electrical energy produced as a percentage of potential energy present in the fossil fuel burned in the power plant. All around the world, researchers are trying to find ways to reduce wastage of energy, either by improving the efficiency of the systems, or by recycling the wasted energy. A heat engine is a system that performs the conversion of heat or thermal energy to mechanical work. Examples of everyday heat engines include the steam engine, the diesel engine, and the gasoline (petrol) engine in an automobile. Heat engines are designed to produce useful work only. The efficiency of a modern internal combustion engine is about 37% in a normal passenger car spark ignition engine. The energy in the form of heat is rejected by means of exhaust, circulating cooling water, lubrication oil & radiation.

II. OBJECTIVES

Extracting of energy from waste gases of IC engine and thermoelectric modules.

Our foremost aim in selecting this project is to convert waste energy into usable energy.

Arriving at a standard design of the system which should be simple and easy to install to the existing vehicles.

III. METHODOLOGY

The waste exhaust gas from the vehicle which is at a certain pressure is passed through a device. Where the blower or turbine is placed to the nozzle from the IC engine, when the exhaust air hits the turbine it rotates. Turbine is connected to the dc generator helps to rotate simultaneously to generate electric city in terms of voltage. The exhaust heat from the silencer is directly converted to the electric power by Peltier chip. This chip works on seebeck effect and converts heat energy into electrical energy.

A. Design calculations

1) Turbine

Number of Blades = 32
Diameter of the turbine = 15cm
Velocity = 8 m/s to 21.3 m/s

FORMULAE TO BE USED

Where Cp = Maximum power coefficient, ranging from 0.25 to 0.45
2) **Theoretical Calculation**

Swept area by the turbine

\[A = \pi R^2 \]
\[= 3.14 \times (0.075)^2 \]
\[= 176.625 \times 10^{-4} \text{ m}^2 \]

Velocity of the turbine

\[V = \left(\pi D N / 60 \right) \]
\[= (3.14 \times 0.15 \times 600) / 60 \]
\[= 4.71 \text{ m/s} \]

Power available at the turbine

\[P = \frac{1}{2} \text{density} \times A \times V^3 \times C_p \]
\[= \frac{1}{2} \times 1.23 \times 176.625 \times 10^{-4} \times (4.71)^3 \times 0.4 \]
\[= 0.454 \text{ watts} \]

3) **Experimental Calculation**

Power generated (Idling)

\[P_g = V \times I \]
\[= 3 \times 12 \times 10^{-3} \]
\[= 0.036 \text{ watts} \]

Power generated (Full Throttle)

\[P_g = V \times I \]
\[= 19 \times 12 \times 10^{-3} \]
\[= 0.228 \text{ watts} \]

4) **Peltier Chip**

Power generated from Peltier chip = 0.1 watts

B. Turbine Design

![Fig.3.1 Isometric View of turbine](image)

![Fig.3.2 Front View of turbine](image)

C. Casing Design

![Fig.3.3 Isometric View of casing](image)

![Fig.3.4 Front View of casing](image)
D. Frame Design

![Fig.3.5 Front View of frame](image1)

![Fig.3.6 Side View of frame](image2)

All dimensions are in millimetres.

IV. FABRICATED MODEL

![Fig.4.1 Front View](image3)

![Fig.4.2 Top View](image4)

V. RESULTS

GRAPHS

![Power vs Velocity Graph](image5)

Fig.5.1 Power vs velocity Graph
VI. CONCLUSION

Above are the graphs plotted for obtained and calculated values. From the figures 7.1 and 7.3 it can be inferred that power is directly proportional to velocity of exhaust gases and speed of turbine rotating. But speed of turbine disc directly depends on the velocity of exhaust gases. By this it can be concluded that power generated by dc generator is dependent on velocity of exhaust gases. The obtained voltage as measured multiple times was about 18 volts and 12 mA. The current can be improved with a step-up transformer without affecting the voltage. The voltage produced was 3 volts and 0.3 mA (0.1 watts) and in real time application in industries a bigger TEG with more capacity (up to 45 watts) can be used. It was observed that in our current project there was no much temperature difference and the surrounding area of exhaust pipe would also get the heat due to convection, dropping the temperature difference of two sides of the chip.

REFERENCES

S.Vijaya Kumar, Amit Kumar Singh, Athul Sabu, Mohamed Farhan.P, “Generation of Electricity by Using Exhaust from Bike” Vol. 4, Special Issue 6, May 201

Norbert Stuban and Adam Torok, “Utilization of exhaust gas thermal energy”.