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Abstract: This paper deals with optimization of the joint space trajectory for any general manipulator. The optimization has been 
done with the primary design objective of minimization of traversal time. Multi-segment blended trajectory for point to point 
motion with via points was used for calculation of path. The time required for the manipulator to complete a particular segment 
was calculated based on the actuator inputs and path constraints specified by the user. There is a possibility that the user may 
specify actuator parameters such that the maximum possible acceleration cannot attain the maximum possible velocity within 
the constraints of the path. For such a case, a bisection method algorithm was applied to find the best possible and attainable 
velocity. Also the possibility of successively increasing or decreasing via points has been covered. Inherently a multi-segment 
linear trajectory with parabolic blends is an approximate technique. Therefore a correlation between the positional error and 
specified velocity and acceleration has also been established. A MATLAB code has been written for implementation of the above 
methodology. Plots of joint displacements, velocities and accelerations have been plotted against time. The program also 
calculates the minimum possible execution time for the calculated path.  
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I.  INTRODUCTION  
Optimization of manipulator trajectory in industrial automation is one of the primary concerns for minimizing cycle time. Luh, J. Y. 
S., Walker, M. W [1] have shown that minimization of traversal time can be achieved by interpolating the set of via points using 
straight line segments connected by smooth arcs. This problem can be expressed as a set of inequalities quantifying the physical 
constraints imposed by manipulator hardware. Linear programming can then be used to solve such a set of inequalities. These 
physical constraints can be in the form of a certain torque that produced at a particular joint [2], [3] or it can be expressed as a limit on 
the acceleration and velocity that can be achieved [4]. However, owing to the complexity of the task and manual computational 
limitations, research in this direction has been towards developing algorithms and computational techniques which optimize trajectory 
based on certain constraints. Manipulator dynamics is also a crucial deciding parameter which restricts the link acceleration and 
velocity [5], [6]. Zvi Shiller et. al. [5] have proven that the optimal trajectory is extremal in the acceleration along the path at all times 
except at singular points and arcs where it maximizes the feasible velocity along the path. This algorithm is robust to path variations 
and does not fail at singular points. The feasible range for the acceleration and velocity was found using actuator constraints in the 
dynamic model of the manipulator. J. Y. S. Luh and C. S. Lin [7] have presented a method of obtaining a time history of velocities 
and accelerations along the specified manipulator path to obtain a minimum traveling time, under the constraints on linear and angular 
velocities and accelerations. To solve the myriad of nonlinear inequality constraints from physical limitations, the "method of 
approximate programming (MAP)" is applied. Also, a "direct approximate programming algorithm (DAPA)" was developed and 
found to converge to optimum feasible solution for the trajectory planning problem. Apart from the actual optimization of, the 
constraint of “jerk” or a sudden acceleration must also be considered [8], [9].  For the successful execution of any task, the 
manipulator is required to move along a particular pre-defined geometric path [10]. This geometric path is in the so called “Cartesian 
Space” of the robot. This geometric path can be converted to a suitable set of joint variables in the “Joint Space” of manipulator, using 
the inverse kinematic model of that particular manipulator. The acceleration and velocities obtained such that it satisfies the 
aforementioned conditions can be converted into the joint acceleration and velocities using the dynamic model. The prime goal of 
trajectory planning is to construct the required motion in the form of a time sequence of locations where the joints or end effector 
should be located along with the calculation of velocities and accelerations at every point in the time sequence. The former approach 
is known as ‘joint space trajectory planning’ and is the subject of this work. This set of data is the input to the control system of the 
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manipulator. The trajectory is usually specified by a number of points known as ‘via points’ and the path is constructed by either 
exact or approximate interpolation through these via points. It is very crucial from a practical standpoint that the path generated has at 
least tangent continuity throughout. This prevents sudden jerks, mechanical vibrations, wear and tear of mechanical systems and 
ensures practically achievable gradual starts and stops. 

II. APPROACH AND ANAYTICAL TREATMENT 
A. Selection of Joint Space Technique 
There are several techniques that can be used to construct a path through the specified via points. However, as the fastest possible path 
between any two points is the straight line joining them, a linear trajectory with parabolic blends becomes the obvious choice 
satisfying the tangent continuity condition [11], [12]. The only limitation of this approach is that, this technique gives an approximate 
interpolation through via points rather than an exact one. Only the initial and final positions are successfully met, whereas for other 
positions the end effector motion achieves the closest possible position, for the specified acceleration and velocity, in the vicinity of 
via point. This limitation however can be easily circumvented by giving a position with the error in position taken into consideration. 
There exists a definite correlation between the specified velocity, acceleration and the error associated with the position which has 
been stated in the subsequent sections.  

B. Analytical Treatment  
As shown in Fig. 1, a first order differentiable path for joint variable, ‘q’, is computed with a linear segment connecting via points 
and parabolic blends are added in the vicinity of the points.  

 
Fig, 1: Blended trajectory for several segments 

To maintain the tangency condition at intermediate points, a continuous parabola for the two-blended segments at via point has been 
used. This is the reason why the polynomial q(t) does pass exactly through the via point and renders the point as a virtual or pseudo 
via point. Naturally, the path points, travel time between successive path points and constant blend acceleration are the prerequisites 
for computation of trajectory. This leaves only the blend duration at each path point as a parameter to be calculated. 
The following nomenclature followed in [13] has been used in this analysis 
qj– value of joint variable q corresponding to path point j 
푞 −̈Magnitude of constant blend acceleration at point j 
Tjl– total travel time between points j and l 
tjl– travel time for linear segment between j and l 
tj– duration of blend around path point j 
푞̇ − constant joint velocity between points j and l 
For the via points, the blend duration tjl near via point l is computed from specified acceleration at the via point ql and the constant 
linear velocities in two segments 푞̇  and푞̇ . 

lmjl

l l

q qt
q



 


                                                                                  (1) 

where,               ( ) | |l jl jl lq sign q q q          (2) 
  

The linear velocity in segment jl is given by 
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     (3) 

he duration of the linear segment tjl, assuming parabolic blend symmetric around the path point, is 
 1 1

; 2 2jl j j lt T t t       (4) 

To compute the blend duration at the initial point j = 1, the fact that the joint velocity at the end of the blend is same as the velocity 
of the linear segment 12 (t12), is used. This gives 

 
2 1

1
1 1

12 12

q qq t
T t





      (5) 

where,      1 2 1 1( ) | |q sign q q q               (6) 
From eq. (5) the blend time t1 at the initial point and using t1, the linear segment velocity and duration, 푞̇  and t12 are computed as 
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12 12 2 12t T t t       (8) 

and, 
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Finally, the blend duration at the goal point is determined. Similar to the starting point, the velocity continuity constraint, in the 
middle segments connecting the path points (k – 1) and k, gives 
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where, 

 1( ) | |k k k kq sign q q q         (11) 

The solution for blend duration, linear velocity, and its duration are 
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Thus, all the requisite parameters to determine the time history of joint position, velocity and acceleration are obtained using eq. 
stated above. It is important to note that at each via point the acceleration must be sufficiently large and should satisfy the below 
mentioned condition. 

 2
4 | || | ; 0

g s
c c

g
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       (15) 
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The solution will not exist if eq. (15) is not satisfied. In case of the equality the two blends meet at tm and there is no linear or constant 
velocity segment and only acceleration and deceleration segments are present giving a triangular profile rather than a trapezoidal one. 
On the other hand, as the acceleration becomes larger and larger, the blend diminishes and the trajectory tends to linear interpolation 
with acceleration tending to infinity or tb tending to zero. In our case the same value of blend acceleration has been used to make 
computations simpler. Also, this condition has been used as an optimizing parameter.   

III. OPTIMIZATION METHODOLOGY AND ALGORITHM OF THE CODE 
A. Modifications Required in The Approach 
Now, with the analytical approach discussed, the methodology for optimization may be formulated. The time required to cover the 
distance between any two points is taken as an input in the above technique. This facilitates the calculation of tb through the use of eq. 
(12). However, the problem at hand, requires this time to be calculated based on the actuator specifications. Hence we modify and 
rearrange eq. (14) as follows to suit our requirements. 

 
1

( 1) ( 1)

k k

k k k k

q qT
q



 





    (16) 

Also, rather than calculating the blend time from the total time, the blend time is independently calculated. 
1) For the start and end blends the blend time is calculated by fitting a parabola with 3 boundary conditions of 2 slopes at ends of 

the parabola and a point continuity at either the start or end points. Thus the blend time tb, can be calculated by the following 
formula. 

kl
k

k

qt
q





    (17) 

2) For intermediate blends there are 2 cases 
3) The first case is of successively increasing or decreasing path points. In this case there is no need for any blend as the path may 

continue with the same velocity. In this case the via points will be reached exactly. 
4) The second case is of via points initially increasing then decreasing or vice versa. In this case a blend is required and the blend 

time is calculated as follows. 
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    (18) 

Now, for calculating the straight line time history, the time during which the acceleration of the joint is zero is calculated either from 
eq. (4), eq. (8) or eq. (13), depending on the case. 

B. Algorithm for Optimization 
If the user has entered the actuator specifications such that, eq. (15) is being satisfied, then the trajectory can be computed. 
However, in the case of weak acceleration, the condition is not satisfied. In this case the best possible path would be the one in 
which the actuator is continuously accelerating and the maximum velocity is achieved at the point of inflection where two 
consecutive parabolas meet. There are two ways in which this velocity may be calculated, either analytically or numerically. For the 
analytical solution eq. (15) may be solved for the equality condition to find tg, for every segment, thereafter one can calculate the 
velocity. This however becomes complex. Thus we shift towards a numerical approach, the one followed in this work. Bisection 
method [14] has been implemented to gradually converge onto the best possible velocity. The condition for changing the upper and 
lower bracketing limits are as follows. 
1) If a certain straight line segment is skipped, this means that the velocity is too high. So the upper bracketing limit is changed. 
2) Alternatively, if all the straight line paths are achieved, this means that there is further scope for optimization and so the lower 

limit is changed. 
This algorithm is followed for 1000 iterations and the final achievable velocity is displayed. A detailed flowchart of the algorithm 
has been included in Appendix ‘A’. 
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IV. RESULTS AND DISCUSSIONS 
In this section various cases are discussed and the output of the code has been presented. The path point inputs has been kept 
constant as shown in Table 1. The only change that has been done is in the velocity and acceleration. 

Table. I. Input Path Points 
Joint Variable Value (radians) 

q1 1 
q2 50 
q3 25 
q4 10 
q5 20 

 

A. Case of sufficient acceleration 
In this case we take acceleration as 20 rad/s2 and velocity as 10 rad/s. The output given by the code is as follows. 

 
Fig. 2: Output for case 1. 

Also the time history plot generated by the code is as follows.  
Legend:  
Blue- Displacement 
Green- Velocity 
Red- Acceleration. 

 
Fig. 3: Time history for case 1. 
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B. Case of insufficient Acceleration 
In this case we take acceleration as 5 rad/s2 and velocity as 20 rad/s. The output given by the code is as follows. 

 
Fig. 4: Output for case 2. 

Also the time history plot generated by the code is as follows.  
Legend:  
Blue- Displacement 
Green- Velocity 
Red- Acceleration. 

 
Fig. 4: Time history for case 2. 

As it is evident from the graph, the last trapezoidal profile has almost reached a triangular shape. This is the required condition for 
the most optimized path. 

C. Dependancy of positional Error on Acceleration 
In this section the dependency of positional error on acceleration is shown. Only 3 path points have been considered for simplicity. 
This will give only 1 positional error as the start and goal points are exactly met. The path points are: 

Table II: Path Points 
Joint Variable Value (radians) 

q1 0 
q2 π 
q3 π/2 
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Three values of acceleration have been considered, namely 1 rad/s2, 3 rad/s2, and 9 rad/s2. The following plots were obtained. 

 
Fig. 5: Acceleration = 1 rad/s2 

 

 
Fig. 6: Acceleration = 3 rad/s2 

 
Fig. 7: Acceleration = 9 rad/s2 
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The percentage error has been calculated as follows.  

 % 100required reached

required

q q
error

q


      (19) 

The results of this analysis have been stated in Table III. 
 

Table III: Positional Error as a Function of Acceleration 
Acceleration (rad/s2) Percentage Error (%) 

1 3.47 
3 1.09 
9 0.36 

 
As one can clearly observe that there exists an approximate linear decrement correlation between the percentage error and the 
acceleration. 

V. CONCLUSION 
Thus in this work, an optimization methodology has been discussed to optimize the joint space trajectory with respect to 
minimization of traversal time. In the case when the user specifies actuator parameters which are not complacent with positions 
required and the velocities specified, a bisection method was used to find the optimum achievable velocity. Also a correlation 
between the acceleration and the positional error has been established. 
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APPENDIX ‘A’- FLOWCHART OF TRAJECTORY COMPUTATION ALGORITHM 

 



 


