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Abstract: This paper introduced the problem of external equal sorting. External sorting involves sorting more data than can fit 
in the combined memory of all the processors on the machine. It consists of using the disk as a form of secondary memory, and it 
presents ome fascinating challenges because of the vast difference between the bandwidths and latencies of memory and disk 
systems. It is an inefficient way to normalize data regarding computational complexity. But it is an entirely right way regarding 
software engineering because the availability of easy to use sorting routines in subroutine libraries makes the amount of coding 
required very small. I had already used this technique in the serial version of the speech recognition system, so it seemed natural 
to do the same for the parallel version. This presents efficient algorithms for external Equal sorting and remote data update.  
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I. EQUAL DISK  ALLOCATION SYSTEMS 
There is a large variety of different disk I/O systems available for equal computers. In some systems, each CPU has its private drive, 
and in others, there is a central bank of disks accessible from all CPUs. For this work I assumed the following setup: a distributed 
memory equal computera equal file system where all CPUs can access all the data The particular setup I used was a 128 cell 
AP1000 with 32 disks and the HiDIOS equal file system [Tridgell and Walsh 1996].The requirement of a file system where all 
CPUs ca access all the data isn't as much of an impediment as it might first seem. Almost any distributed file system can quickly be 
given this property using a remote access protocol coupled to the message passing library1. 
1The AP1000 has only local disk access in hardware. The operating system provides remote disk  
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II. DESIGNING AN ALGORITHM 
An external equal sorting algorithm has design constraints entirely different from an internal algorithm. The main differences are: 
the average number of I/O operations per element needs minimize the I/O requests need to be gathered as far as possible into large 
requests the algorithm should, if possible, run-in-place to allow data sets up to the full size of the available disk space The 
interesting difference that the group of I/O requests can make demonstrated by the write throughput results. The graph shows the 
aggregate write throughput on a 128 cell AP1000 with 16 disks2. With the performance varying by four orders of magnitude 
depending on the size of the individual writes it is clear that an algorithm that does a smaller number of larger I/O requests is better 
than one which does a large number of small claims. Some events in this chapter are for a system with 32 disks, and others are for a 
system with 16 drives. The machine I used was reconfigured part way through my research. 

III. CHARACTERIZING EQUAL SORTING 
An external sorting algorithm needs to make extensive use of secondary memory (usually disk). In this chapter, I will characterize 
the external sorting using a parameter p where p = A where  (where letA=DMN)is the number of elements b sort and M is the 
number of items that can fit in the internal memory of the machine. It Means that P equal to 1 implies internal sorting (as the data 
can provide in memory) and any value of P more significant than 1 suggests external sorting. P is rarely huge as sizeable equal disk 
systems are usually attached to computers with reasonably large memory subsystems. On the AP1000 available to me P is limited to 
8 (a total of 2GB of RAM and 16GB of the disk). To simulate the effect of more significant value for P some of the test runs use a 
deliberately limited amount of memory. 

IV. LIMITATIONS ON INPUT AND OUTPUT 
Lower limits on the computational requirements for equal external sorting are the same as those for internal sorting. It is, however, 
illuminating to look at the smaller restrictions on I/O operations required for external sorting as quite precisely the number of I/O 
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operations needed will impact significantly on the performance of the algorithm. The most apparent lower limit is at least one read 
and one write per element. It Stems from the fact that every aspect has to be moved at least once to change the order of the items. 
Can this limit be achieved? It is relatively easy to show that it cannot. Imagine we had an algorithm that performed only one read 
and one write per element. As the items cannot predict in advance, we cannot place any part in its correct output position with 
certainty until all aspects have read. That implies that all the reads must perform before all the writes. In that case, the algorithm 
would have to store internally (in memory) enough information to characterize the ordering of the elements. The memory required 
to do this for non-compressible data is at least log(N!) bits, which is approximately N log(N). With k > 1 this cannot be achieved3. 
The algorithm presented in this chapter demonstrates that external equal sorting can, however, be done with an average of 
approximately two reads and writes per.3Strictly it could be done if the size of each element is more significant thank log 
N.element, at least for values of k that are practical on the machines available to me. 

V. OVERVIEW OF THE ALGORITHM 
The external sorting algorithm works by mapping the file onto a 2-dimensional k × k grid in a snake-like fashion4. The columns and 
rows of the network are then alternately sorted using the internal equal sorting algorithm described above. It can be demon-strated 
[Schnorr and Shamir 1986] that the upper limit on the number of column and row sorts required is d log key + 1. This basic 
algorithm augmented with some optimizations which significantly improve the efficiency of the algorithm in the average case. In 
particular, the grid squares further divided into slices which contain enough elements to fill one processor. The top and bottom 
component of each slice are kept in memory allowing the efficient detection of slices for which all items are in their correct final 
position. In practice, this means that most slices completely sorted after just one column and row sort, and they can ignore in the 
following operations The algorithm also uses dynamic allocation of processors to slices, allowing for an even distribution of work to 
processors as the number of unfinished slices decreases. The proof that the algorithm does indeed sort and the upper limit on the 
number of column and row sorts comes from the sheer sort algorithm[Schnorr and Shamir 1986]. 

VI. PARTITIONING 
The external sorting algorithm starts off by partitioning the file to be sorted into a two-dimensional grid of size k × k. Each grid 
square is further subdivided into some slices so that the number of elements in a slice does not exceed the amount that can hold in 
one processor's memory. An example of this partitioning shown in Figure 2.2 for k = 3 and P = 6. Each slice in the figure labeled 
with two sets of coordinates. One is its slice number, and the other is its (row, column) coordinates. The slice number uniquely 
defines the slice whereas the (row, column) coordinates shared between all slices in a grid square. 

VII. COMPLETION PROCESS 
An important part of the algorithm is the detection of completion of the sort. Although it would be possible to use the known 
properties of shearsort to guarantee comple-tion by just running the algorithm for dlog k + 1e passes, it is possible to improve 
the average case enormously by looking for early completion. Early completion detection is performed on a slice by slice basis, 
rather than on the whole grid. Completion of the overall sorting algorithm is then defined to occur when all slices have been 
completed. The completion of a slice is detected by first augmenting each slice number with a copy of the highest and lowest 
element in the slice. The last processor to write the slice holds these elements. At the end of each set of column or row sorts 
these sentinel elements are then gath-ered in one processor using a simple tree-based gathering algorithm. This processor then 
checks to see if the following two conditions are true to determine if the slice has completed: the smallest element in the slice is 
larger than or equal to the largest element in all preceding slices; and the largest element in each slice is smaller than or equal to 
the smallest element in each of the following slices. If these two conditions are true then all elements in the slice must be in 
their correct final positions. In this case the elements need never be read or written again and the slice is marked as finished. 
When all slices are marked as finished the sort is complete. 
 

VIII. PROCESSOR ALLOCATION IN A MATHEDOLOGY 
As slices are marked complete the number of slices in a row or column will drop below the number of processors P. This means 
that if a strictly serialized sorting of the rows or columns was made then processors would be left idle in rows or columns which 
have less than P slices remaining. To take advantage of these processors the allocation of slices to processors is made 
dynamically. Thus while one row is being sorted any unused processors can begin the task of sorting the next row. Even if too 
few unused processors are available to sort the next row a significant saving can be made because the data for the slices in the 
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next row can be loaded, thus overlapping I/O with computation. This dynamic allocation of processors can be done without 
additional communi-cation costs because the result of the slice completion code is made available to all processors through a 
broadcast from one cell. This means that all processors know which slices have not completed and can separately calculate the 
allocation of proces-sors to slices. 

IX. ALGORITHM PERFORMANCE 
The problem with measuring the speed of external sorting is finding enough disk space. The AP1000 has 2GB of internal 
memory, which means you need to sort con-siderably more than 2GB of data to reach reasonable values of P Unfortunately 
only 10GB (of a possible 16GB) is allocated to the HiDIOS file system, so a P above 5 is not possible when the full internal 
memory of the machine is used. In practice a k of above 
 

X. WORST CASE 
An essential property of a sorting algorithm is the worst case performance., Ideally, the worst case is not much worse than the 
standard fact, but this is hard to achieve. The worst case for the external sorting algorithm is when the data starts out sorted by the 
column number that assigns after the partitioning stage. It will mean that the first column sort will not achieve anything. The worst 
case of log k + 1 passes can then made. Additionally, the data distribution required for the worst example of the internal sorting 
algorithm should use. 

XI. CONCLUSIONS 
The external equal sorting algorithm presented in this chapter has some quite strong similarities to the internal equal sorting 
algorithm from the previous section. Both get most of their work done with a first pass that leaves the vast majority of elements in 
their correct final position. In the case of the external algorithm, this first pass is the natural first step in the overall algorithm 
whereas for the internal algorithm the first pass is logically separated from the cleanup phase. The external algorithm also makes 
very efficient use of the disk subsystem by using I/O operations that are of a size equal to the internal memory size of each of the 
processors. It makes an enormous difference to the practical effect of the algorithm. 
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