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Abstract: The present work considers fluid flow within a straight micro channel of rectangular cross section using Integral 
technique. The flow is represented by the Navier-Stokes equation subjected to slip boundary conditions and solved by Integral 
method considering both Ritz and Kantorovich profiles. Results obtained is validated and agreed with existing literature well. 
Thus, along with the velocity distribution, Poiseuille number and slip coefficient are also determined for both the Ritz and 
Kantorovich profiles. The results are presented in a comparative manner along with the existing literature to predict accuracy 
level of all the profiles. It is observed that the accuracy level for the velocity profile obtained in each profile depends on the 
aspect ratio where as for the prediction of Poiseuille number and slip coefficient, all the profile show less dependency on the 
aspect ratio.  
Keywords: Rectangular microchannel, Slip-flow, Velocity distribution, Knudsen number, Poiseuille number, slip coefficient. 

I. INTRODUCTION 
In current days, fluid flow in microchannel is an emerging area of research due to the growing demand of microfluidic devices and 
systems. It plays an important role in various applications of medical and biomedical areas, computer chips, and chemical 
separations etc. In this connection, a new research area, namely Micro-electro-mechanical systems (MEMS) is opened up where 
non-continuum behavior exists [1], and the components like, micro-valves, micro-pumps and actuators are miniaturized, integrated 
and assembled. However, the fundamental understanding of flow characteristics such as velocity distribution, Poiseuille number and 
slip coefficient is vital for systematic design and process control of microfluidic applications [2]. It is noticed that the flow in the 
micro level is associated with the inclusion of slip velocity [3] and does not obey the classical continuum physics. Thus, such a flow 
is coupled with a non-zero fluid velocity at boundary walls. It occurs when the value of Knudsen number (Kn) ranges from 0.001 to 
0.1 and corresponding flow is called as slip-flow [3]. In such a flow, the Navier–Stokes equation is combined with the slip-flow 
condition [4, 5]. In this connection, it is found that suitable analytical solutions for the flow through the microchannel are less 
developed.  
The present work is focused accordingly to propose a suitable analytical technique for analysis of the fluid flow within a 
microchannel of rectangular cross section. In this context, some related research works are reviewed. Hooman [3] presented a 
superposition approach to investigate forced convection in microducts of arbitrary cross-section in slip-flow. It is found that 
applying an average slip velocity and temperature jump, the no-slip/no-jump with some minor modifications is applicable. Kundu et 
al. [6] established approximate analytical techniques to determine the velocity distribution considering laminar flow and no-slip 
boundary condition through straight rectangular channels. They adopted some exact and approximate analytical solutions for the 
prediction of velocity and temperature distributions. Chakraborty [7] considered flow problems within a straight microchannel of 
arbitrary cross-section using three general solution methods, namely complex function analysis, membrane vibration analogy and 
variational method. Kuddusi [8] demonstrated slip flow in a rectangular microchannel of heated walls using integral transform 
methods. The 2-D temperature field and Nusselt numbers as function of aspect ratio are also predicted by Morini [9] in case of fully 
developed thermal region of rectangular ducts at constant wall temperature considering a laminar fully developed velocity profile. 
Theofilis et al. [10] determined velocity distribution of a fluid flow through a rectangular channel solving the Navier-Stoke equation. 
They assumed a constant pressure gradient along length of the channel. Peng et al. [11] presented analytical solution for viscous 
flow in an equilateral triangular tube to irregular triangular tubes. The solution is examined and compared with numerical simulation.  
It is seen from the existing literature that the analytical techniques presented are lengthy, complex and laborious. Hence, in the 
present study, Integral technique considering both the Ritz and Kantorovich profiles is adopted for gaseous flow within a rectangular 
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microchannel. The Navier–Stokes equation is solved assuming slip boundary conditions at walls to determine velocity distribution 
for the pressure driven gas flow within the microchannel. 

II. DESCRIPTION OF THE PROBLEM   
In the present study, a pressure driven fully developed laminar gas flow within a straight microchannel of rectangular cross section 
is considered as shown in Fig. 1. The centre of cross section of the channel is considered as origin of the Cartesian coordinate. The 
fluid flows only in the z-direction under steady state condition. A width of 2L parallel to the x-axis and a depth of 2l parallel to the 
y-axis are considered for the cross section. The flow is assumed as viscous incompressible with constant properties. 

 
Fig. 1  A schematic of the channel cross section 

III. MATHEMATICAL MODELLING    
The present work considers a viscous incompressible flow within the straight microchannel of rectangular cross section. 
Considering a hydro-dynamically developed flow, the conservation of momentum equation along the axial direction (z-axis) is 
written as   

dz
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Also 
dz
dp  is the pressure gradient in the flow direction and assumed as a constant in the present study. 

Equation (1) is subjected to the following boundary conditions 
suu   at Lx   and suu   at ly                                             (2a) 
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where us is slip velocity at the solid walls of the channel.  
The average velocity ( mu ) of the flow is determined as 
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The slip velocity ( su ) at the walls is expressed [3, 8] as  
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In equation (2a), the boundary conditions are non-homogeneous. In order to eliminate the non-homogeneity of the boundary 
conditions and present the results as free of units, the governing equation (1) is represented as a non-dimensional equation by 
introducing following non-dimensional variables as [3]  

)(
)(2 s

c

uu
dzdpL

U 
 ,

L
xX  , 

l
yY   and 

L
lA    

Substituting these non-dimensional variables in the equation (1), the governing momentum equation becomes 

11
2

2

22

2











Y
U

AX
U                    (4) 

The non-dimensional form of the boundary conditions becomes 
0U  at 1X  and 1Y                                                                                                                      (5a) 

0



X
U  and 0




Y
U at 0X , 0Y                                                                                                          (5b) 

The equation (4) is the non-dimensional form of Navier-Stokes equation for a fully developed flow subjected to no-slip boundary 
condition. Accordingly, the flow velocity U  is considered as the velocity for no-slip condition and expressed as nsU . However, in 
the present microchannel flow, a non-zero velocity is present at the boundary walls. Assuming a constant slip velocity at the 
boundary, a normalized velocity (U ) of flow within the microchannel is expressed as [3] 

BUBU ns  1Y)(X,                                                                                                                     (6)  
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The equation (4) is solved to determine the velocity profile considering no-slip condition and hence the velocity profile for the slip 
flow is determined by the equation (6). In the present work, Integral for both Ritz and Kantorovich profiles are considered in order 
to determine the velocity distribution. In flow through microchannel, slip coefficient s  which measures the velocity slip at the 

boundary is expressed as 
m

s
s u

u
  and the Poiseuille number as RefPo  .  Both the parameters are important in predicting fluid 

flow characteristics within the microchannel and expressed as [3]  
Bs  1                               (7a) 
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Finally, equations (1-7) are solved using the three solution techniques to predict the velocity distribution within the microchannel.  

A.  Solution method by Chakraborty [7] 
In this section, equation (4) is solved in finite series form using the analytical technique proposed by Chakraborty [7] and finally 

the slip velocity is determined as 
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The Poiseuille number (Po) is expressed as 
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B. Integral method 
In this section an approximate analytical solution using Integral method is presented. The governing equation (4) has been solved 
for Ritz profile and Kantorovich profile. 
1) Ritz profile 

Here, the equation (4) is solved by the Integral method using second-order approximation of the Ritz profile.  Accordingly, a 
truncated series for the velocity profile is assumed as  
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Both the equations (11) and (12) are solved to determine a0 and a1 and hence, equation (10) is used to obtain the normalized no-
slip velocity  YXU ns , . Substituting  YXU ns ,  in equation (6), the velocity profile is determined as 
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The Poiseuille number (Po) is determined as 
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2) Kantorovich profile 
The solution of equation (4) is determined by the Integral method using Kantorovich profile as  
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 The Poiseuille number (Po) is determined as 
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where   21
2489227   and   21

2489227   

IV. RESULTS AND DISCUSSION 
The Navier-Stokes equation subjected to slip boundary conditions is solved using various analytical techniques to determine the 
velocity distribution, and corresponding slip coefficient ( s ) and Poiseuille number (Po). The Ritz and Kantorovich profiles of 
Integral technique are adopted. The results obtained are compared with numerical solution and an existing work by Chakraborty 
(2008) for the validation purpose.  
In Fig. 2 and 3, velocity distribution obtained is presented in y-direction at X = 0 for A = 1.0 and A = 0.5, respectively, based on the 
Ritz and Kantorovich profiles and compared with the solution of the existing method (Chakraborty [7]). A good agreement of the 
present solutions is observed with the existing method. The deviation is slightly higher in case of A = 1.0 than A = 0.5. It is also 
observed that the deviation is more in the flow towards the centre of the channel.  

 
Fig. 2  Comparison of the velocity profile (U ) obtained by the Ritz and Kantorovich profiles ( 1F , 01.0Kn ) with the profile 

by Chakraborty[7] for 1A  

 
Fig. 3  Comparison of the velocity profile (U ) obtained by the Ritz and Kantorovich profiles ( 1F , 01.0Kn ) with the profile 

by Chakraborty[7] for 5.0A . 
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Further, it is found in the literature that the Poiseuille number is of particular interest while analyzing the behaviour of flow within a 
microchannel. The Poiseuille number depends on the Knudsen number (Kn) which normally varies from 0.001 to 0.1 for the 
gaseous flow through microchannel. Hence, the Poiseuille number as a function of Knudsen number is evaluated and presented in 
Fig. 4 and 5 for A = 1.0 and A = 0.5 based on the Ritz and Kantorovich profiles.  The variation is compared with the existing method. 
It is noted that the present prediction matches exactly with the existing literature. Hence, the Integral Ritz and Integral Kantorovich 
methods also approximate the fluid field well through the microchannel with less error.  

 
Fig. 4  Variation of Poiseuille number ( Po ) with Knudsen number ( Kn ) as determined by Ritz  and  Kantorovich profiles 

( 1F ) for 1A  . 

 
Fig. 5  Variation of Poiseuille number ( Po ) with Knudsen number ( Kn ) as determined by Ritz  and  Kantorovich profiles 

( 1F ) for 5.0A  . 

In addition to the methods for solving flow field through the microchannel, it is stated that the slip coefficient which measures the 
velocity slip at the boundary and is of particular interest. The work accordingly predicts the slip coefficient evaluated at different 
Knudsen numbers for different analytical methods. The respective slip coefficients are summarized in Table 1 for A = 1.0 and in 
Table 2 for A = 0.5. 

Table 1  A comparison of the slip coefficients for Ritz and Kantorovich profiles at A = 1.0 
Solution methods Slip coefficient (β) 

Kn = 
1.00E-03 

Kn = 
0.003162 

Kn = 
1.00E-02 

Kn = 
0.031623 

Kn = 
1.00E-01 

Chakraborty[7] 0.017241 0.052562 0.149254 0.356824 0.636943 
SOV 0.017241 0.052562 0.149254 0.356824 0.636943 
Integral Ritz 0.016393 0.050066 0.142857 0.345141 0.625000 
Integral 

Kantorovich 
0.016949 0.051703 0.147059 0.352843 0.632911 
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Table 2  A comparison of the slip coefficient for Ritz and Kantorovich profiles at A = 0.5 
 

Solution methods 
Slip coefficient (β) 

Kn = 
1.00E-03 

Kn = 
0.003162 

Kn = 
1.00E-02 

Kn = 
0.031623 

Kn = 
1.00E-01 

Chakraborty[7] 0.007737 0.024064 0.072333 0.1978 0.438116 
SOV 0.007737 0.024064 0.072333 0.1978 0.438116 
Integral Ritz 0.007353 0.022888 0.068966 0.189787 0.425532 
Integral 

Kantorovich 
0.007605 0.023659 0.071174 0.195054 0.433839 

V. CONCLUSIONS 
The present work considers a steady viscous flow within a straight microchannel of rectangular cross section. Ritz and Kantorovich 
profile of Integral technique are considered to obtain the flow profiles. The reduced form of the Navier-Stokes equation subjected to 
slip boundary conditions is solved using the analytical methods. The predictions obtained by the offered analytical techniques for A 
= 1.0 and A = 0.5 are compared with the existing work in literature for validation purpose. Subsequently, two important parameters 
of the flow through microchannel, namely Poiseuille number and slip coefficient are determined at different Knudsen numbers for 
the various analytical methods.  It is observed for velocity distribution, the Integral Ritz and Integral Kantorovich methods provide 
closer solution at A=0.5 compared to A=1.0. For the prediction of Poiseuille number, almost all the profiles predict closer results 
with the existing literature.   
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