In Silico Analysis of Bacterial Functional Amyloids and their Interactions

Kush K. Mehta¹ Anoop R. Markande²

¹,² C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli Mahavva Road, Tarsadi - 394 350, Surat district, Gujarat, India.

Abstract: Amyloid proteins have been known to be responsible for many neurodegenerative diseases of mammals including humans. Histopathologically, amyloid fibres are known to be formed due to mis-folds, mutations and other induction events concerned with these proteins in the patients. Once formed, these amyloid proteins have been well reported to undergo nucleation and form fibrous projections that result in cell-death. In living system (microorganisms and higher organisms alike), similar functional amyloid proteins are known to be produced with similar nucleation process. In this report the homologous proteins were created for functional amyloids from Escherichia coli, Bacillus thuringiensis, Bacillus atropheus, Streptococcus pyogenes and Dinoroseobacter shibae. Using the Z-dock server, analysed their interaction with each other. This report will help in understanding the self-folding and nucleation process of the functional amyloids in bacteria and further correlate the functional amyloids of bacteria with pathological amyloids in mammals.

Key words: Functional amyloids, homology modelling, Docking, Interaction

I. INTRODUCTION

Amyloid fibers are reported to be made up of amphipathic proteins that aggregate and since long time have been associated with neurodegenerative diseases such as Alzheimer’s, Parkinsons and many other Prion diseases. As seen in a newly described class of ‘functional’ bacterial amyloids (FuBA), the amyloid formation can be an integral part of normal cellular physiology. Even with varied differences in their primary sequence, many proteins can assemble into amyloid folds. This shows that the amyloid fold has been selected multiple times during the evolution for various functions [1]–[4]. By nucleation (aggregation) - dependent mechanism, elongation of histopathological amyloid proteins occurs into fibrils consisting of structured oligomers and protofibrils. The three detailed amyloid aggregation phases are lag, exponential and stationary. These oligomers and protofibrils are considered as the real cytotoxic species in relation to causing human diseases and cytotoxic bacteria [3], [5]. This cellular toxicity of amyloids is avoided in bacteria by using dedicated and highly controlled pathway for assembling amyloids and extracellular assembly of these proteins. Thus by nullifying the cytotoxic effects of amyloids, they can be used as stable protein structures for many different functions [4], [6]. Only few bacterial species important in relation to human infections have been studied with respect to FuBA with curli like fibrils. This list of bacteria capable of producing FuBA is growing rapidly but only a few of them have been purified and investigated in depth. Thus major functions proposed for FuBA generalized for all bacterial amyloids are still speculations [3]. No major studies are available for bacterial functional amyloids proteins in silico and in this study, we are incorporating recently unraveled protein structure of TAS protein from Bacillus subtilis for analyzing the nucleation and self-assembly of these bacterial proteins. In the present work, we have analyzed the bacterial functional amyloids (synthesized as models and crystal structures available) for their ability to interact with one another and act as a nucleation initiators for each other.

II. MATERIAL AND METHODS

A. Database Mining and Collection of Sequences

The FASTA sequences (DNA and protein) of bacterial amyloids were collected from public databases (NCBI and Uniprot). The collected sequences were filtered against hidden Markov model (hmm) using hmmsearch (http://hmmer.janelia.org/).

B. Analysis of the Sequences Collected

The sequences were converted to sensible protein sequences using Expasy software and analyzed by Protparam server and their subcellular localization was predicted by using CELLO [7].

C. Sequences Used

FASTA sequences of the amyloid proteins were used for the homology models creation for Escherichia coli K12 CsgA protein (P28307), Bacillus thuringiensis serovar kurstaki YBT-1520 TASA protein(PBMB7635_08), Bacillus atropheus 1942 TasA (BATR1942_10625), Streptococcus pyogenes MGAS15252 (MGAS15252_1626) and Dinoroseobacter shibae...
DFL12(Dshi_4130). The PDB file of recently deduced TasA protein of *B. subtilis* as the standard for analyzing the interaction of homologous proteins.

D. **Homology Modelling**

The protein sequences thus made were converted to PDB files using Swissmodel, Phyre2 and RAPTOR-X servers. The constructed models were verified by using ProSA web. The energy minimization was performed by using Swiss-PdbViewer (DeepView v4.1) and best model was selected. The PDB files thus generated were submitted to Protein Model Database (PMDB) and were used for further analysis [8].

E. **Docking Studies**

TasA$_{239}$, a bacterial amyloid available as protein crystal with PDB ID 5OF1 and 5OF2. Using Z-dock online server, the docking studies were done for pre-amyloid protein homologues thus prepared among themselves and with the crystal protein of 5OF1 [9].

F. **Softwares used for Viewing**

Swiss-PdbViewer (DeepView v4.1), Chimera 1.11.2 for image generation, PyMOL(TM) 1.7.4.5 (Schrodinger, LLC) and Rasmol 2.7.5.2.

III. RESULTS AND DISCUSSION

Microbial functional amyloids, since their discovery in late 1980s [10], similar proteins have been reported from a number of microorganisms [6]. Majority of these reported functional amyloids are from Proteobacteria, Actinobacteria, Firmicutes and Bacteroides but only a few of them have been purified and investigated in depth. Thus major functions proposed for FuBa generalized for all bacterial amyloids are still speculations [3], [11]. Recently, the TasA amyloid protein from Bacillus subtilis was studied by crystal structure as 5OF1 and 5OF2 [12] and in present manuscript, its structure has been used for nucleation studies and interaction of other amyloid proteins. The amyloid FASTA protein sequences were found to be valid and converted into PDB files and submitted to Protein model database (PMDB). The models were submitted to PMDB as E. coli K12 CsgA (PM0080890), B. thuringiensis serovar kurstaki YBT-1520 TasA (PM0080885), B. atropheus 1942 TasA (PM0080907), S. pyogenes MGAS15252 (PM0080904) and D. shibae DFL12 (PM0080887). TasA$_{239}$, amyloid protein crystal structure from *B. subtilis* was edited with PyMOL software for ‘SAL’ residues and converting into a monomeric unit. The protein was then analysed with newly synthesized amyloid protein structures. Unlike mammalian mis-folded amyloid proteins, the bacterial FuBa are synthesized with purpose. Hence considering their structure as unique, were analysed further by docking studies.

![Figure 1: Interaction studies of crystal Bacterial functional amyloid 5OF1 (in yellow) with homology models. The homology models created namely (a) Escherichia coli K12 CsgA protein (P28307), (b) Bacillus thuringiensis serovar kurstaki YBT-1520 TASA protein (PBMB7635_08), (c) Bacillus atropheus 1942 TasA (BATR1942_10625), (d) Streptococcus pyogenes MGAS15252 (MGAS15252_1626) and (e) Dinoroseobacter shibae DFL12(Dshi_4130).](image-url)
In the field of molecular modelling, docking is a method for the prediction of preferred orientation of two molecules bound to each other to form a stable complex. While protein-protein docking is computationally oriented (in silico), determines the molecular structure of the complex without the need for a wet-lab experiment [9]. Z-DOCK and M-DOCK are rigid-body docking programs predict protein complex structures and symmetric multimers guiding the user in scoring and selection of output models. Z-DOCK is known to achieve high accuracy on protein-protein docking benchmarks [9].

The interaction of B. subtilis TasA protein (5OF1) with other amyloid models from E. coli K12 CsgA (PM008089), B. thuringiensis serovar kurstaki YBT-1520 TasA (PM0080885), B. atrophaeus 1942 TasA (PM0080907), S. pyogenes MGAS15252 (PM0080904) and D. shibae DFL12 (PM0080887) by using Z-DOCK server (Figure 1). 5OF1 was found to interact with most of amyloid protein models under study with GLU229 and THR237 amino acids. Which was found to be major contributors in 5OF1 nucleation (data not shown). The interacting amino acids are listed in Table 1.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Amyloid protein 1</th>
<th>Amyloid protein 2</th>
<th>Amino acids interacting from Amyloid protein 1</th>
<th>Amino acids interacting from Amyloid protein 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5OF1</td>
<td>E.coli CsgA (P28307)</td>
<td>SER52, ASN88, ASP91, TYR139, LYS144, GLU229, THR237</td>
<td>GLN49, GLY53, ASN54, GLY74, ASN77, ARG95, GLY120</td>
</tr>
<tr>
<td>2</td>
<td>5OF1</td>
<td>B.thuringiensis TasA (pBMB7635_08)</td>
<td>LYS35, PHE39-ALA40, ASP190, GLU229</td>
<td>LYS19, TYR33-THR34, LYS39</td>
</tr>
<tr>
<td>3</td>
<td>5OF1</td>
<td>B.atrophaeus TasA (BATR1942_10625)</td>
<td>ALA79, VAL189, GLU229, THR237</td>
<td>PHE109, GLN110-THR112</td>
</tr>
<tr>
<td>4</td>
<td>5OF1</td>
<td>S.pyogenes amyloid (MGAS15252_1625)</td>
<td>ASN88, TYR89, PHE92, PRO102, GLU229, GLN232, THR237</td>
<td>ARG250, MPE220, GLN232, THR237 TO ARG250, PHE255, THR258, HIS479, HIS483, GLN504, GLU539, Zn1</td>
</tr>
<tr>
<td>5</td>
<td>5OF1</td>
<td>D.shibae DFL12 (Dshi4130)</td>
<td>ALA147, LYS152, LYS154, PRO159, VAL184, GLU229, THR237</td>
<td>ASP100, TYR101, TYR218, HIS220, ASP222, GUN225, TRP27, ASP322, ARG335</td>
</tr>
<tr>
<td>6</td>
<td>5OF1</td>
<td>E.coli CsgA (P28307)</td>
<td>ILE13, TYR43, ILE47, GLN23, VAL13, ALA8, LYS5</td>
<td>GLU54, ILE55, THR27, LEU26, GLY25, ILE13</td>
</tr>
<tr>
<td>7</td>
<td>5OF1</td>
<td>E.coli CsgA (P28307)</td>
<td>PHE97, GLN72, TYR50, TYR26, MET1-LYS2</td>
<td>THR43, LEU44, PHE29, ALA27, GLY23, ALA19, ALA15</td>
</tr>
<tr>
<td>8</td>
<td>5OF1</td>
<td>E.coli CsgA (P28307)</td>
<td>LYS5, TYR26, TYR48, TYR50, ASP67, GLN117</td>
<td>TYR212-TYR215, LYS222, ASP242, GLU249-ARG250, HIS479, HIS483, GLU539, Zn1</td>
</tr>
<tr>
<td>9</td>
<td>5OF1</td>
<td>E.coli CsgA (P28307)</td>
<td>PRO134, PHE137, ASP140, VAL142, ARG151, GLY196, THR215-ASN216, HIS220, TRP227, ARG335</td>
<td>ILE12-SER15, ASP21, HIS32, PRO41, SER55, TRP106, ASN145</td>
</tr>
<tr>
<td>10</td>
<td>5OF1</td>
<td>B.thuringiensis TasA (pBMB7635_08)</td>
<td>ILE13, PHE32, ILE57</td>
<td>PHE92, PHE109-THR115</td>
</tr>
<tr>
<td>11</td>
<td>5OF1</td>
<td>S.pyogenes amyloid</td>
<td>ILE20, GLN30, TYR33</td>
<td>TYR198, TYR215, PHE255,</td>
</tr>
</tbody>
</table>
Interaction studies of amyloid models with each other and as dimers showed interesting results. Each of the protein used specific aminoacids for interactions and could form specific structures as given in figure 2 and figure 3. The amino acids involved in the interaction by Z-DOCK server has been given in Table-1.

E. coli K12 CsgA (PM0080890) was found to be interacting with LYS5, PHE97, GLN72, TYR50 and TYR26; B. thuringiensis serovar kurstaki YBT-1520 TasA (PM0080885) was interacting by using PHE32, ILE57 and ILE20; B. atrophaeus 1942 TasA (PM0080907) interacted using TYR218, PHE29 and LEU44; S. pyogenes MGAS15252 (PM0080904) interacted using ASP242, ARG250, PHE255 and HIS479; while D. shibae DFL12 (PM0080887) interacted using ARG151 and TYR275.

Thus the model proteins and crystal proteins of the bacterial functional amyloids have similar specific aminoacidic sequences for interaction and can interact with one another for the nucleation process.
Figure 2: Bacterial functional amyloid docking studies. The interaction image between E.coli CsgA (P28307) with (a) B.thuringiensis TasA (pBMB7635_08), (b) S.pyogenes amyloid (MGAS15252_1625), (c) D.shibae DFL12 (Dshi4130) and (d) B.atropeus TasA (BATR1942_10625) respectively. Also B.atropeus TasA (BATR1942_10625) interaction with (e) B.thuringiensis TasA (pBMB7635_08), (f) D.shibae DFL12 (Dshi4130), (g) S.pyogenes amyloid (MGAS15252_1625); and B.thuringiensis TasA (pBMB7635_08) with (j) S.pyogenes amyloid (MGAS15252_1625) and D.shibae DFL12 (Dshi4130) respectively are also given. Protein docking studies between (j) S.pyogenes amyloid (MGAS15252_1625) and D.shibae DFL12 (Dshi4130) is shown.

Figure 3: Self-interaction of bacterial functional amyloids. (a) Escherichia coli K12 CsgA protein (P28307) dimer, (b) Bacillus thuringiensis serovar kurstaki YBT-1520 TASA protein (PBMB7635_08) dimer, (c) Bacillus atropeus 1942 TasA (BATR1942_10625) dimer, (d) Streptococcus pyogenes MGAS15252 (MGAS15252_1625) dimer and (e) Dinoroseobacter shibae DFL12(Dshi_4130) dimer.
IV. CONCLUSION

The interaction studies of bacterial functional amyloids can help in understanding the mammalian pathological amyloids and further the knowledge in their nucleation process. Although present in silico study in insufficient for confirmed interactions, it gives a basic blueprints for the other works about the possible interactive sites on the amyloid protein chains.

V. ACKNOWLEDGEMENTS

We would like to thank the Director, CG Bhakta Institute of Biotechnology and Provost, Uka Tarsadia University for the facilities.

REFERENCES