Test of Hypothesis: In Two Way Unbalanced Random Model

Fenal R. Kachchhi ${ }^{1}$
${ }^{1}$ Department of Statistics, Saurashtra University, Rajkot, Gujarat

Abstract: Consider the two way nested unbalanced random model,

$Y_{i j k}=\mu+\alpha_{i}+\beta_{i j}+e_{i j k} ; \quad i=1,2 \ldots p, j=1,2 \ldots q$ and $k=1,2, \ldots n_{i j}$
where μ, is a constant and the random variables $\alpha_{i}, \beta_{i j}$ and $e_{i i k}$ are independently and normally distributed with means zero and variances $\sigma_{\alpha}^{2}, \sigma_{\beta}^{2}$ and σ_{e}^{2} respectively. In this paper the tests of hypotheses about $\frac{\sigma_{\beta}^{2}}{\sigma_{e}^{2}}$ and $\frac{\sigma_{\alpha}^{2}}{\sigma_{e}^{2}}$ have been discussed.
Keywords: unbalanced random model, Variance Component, Covariance matrix, orthogonal matrix, optimality.

I. INTRODUCTION

The variance components of a two way nested balanced random model are being estimated by equating the mean sum of squares of analysis of variance to their expected values. The expected values of mean sum of squares suggest the approximate denominator for testing the hypotheses concerning the variance components. However, with the unbalanced data no unique set of sum of squares of observations can be optimally used for estimating the variance components.
In this paper we shall develop some exact tests concerning the variance components in two way nested unbalanced random model by using an orthogonal transformation suggested by Graybill and Haultiquist (1961).

II. TWO WAY UNBALANCED NESTED RANDOM MODEL

A. Consider The Model

$$
\begin{gathered}
\mathrm{Y}_{\mathrm{ijk}}=\mu+\alpha_{\mathrm{i}}+\beta_{i j}+e_{i j k} ; \\
i=1,2 \ldots \mathrm{p}, j=1,2 \ldots \mathrm{q} \text { and } \\
\mathrm{k}=1,2, \ldots \mathrm{n}_{\mathrm{ij}} \quad \sum_{i} \sum_{j} n_{i j}=\mathrm{n}
\end{gathered}
$$

Here μ is a constant while $\alpha_{i}, \beta_{i j}$ and $\mathrm{e}_{\mathrm{iik}}$ are independently and normally distributed with means zero and variances $\sigma_{\alpha}^{2}, \sigma_{\beta}^{2}$ and σ_{e}^{2} respectively, let us define,

$$
\bar{y}_{i j}=\left(1 / n_{i j}\right) \sum_{f_{n=1}}^{n_{i j}} y_{i j k} \quad i=1,2 \ldots \mathrm{p}, j=1,2 \ldots \mathrm{q}
$$

Then

$$
\begin{equation*}
\bar{y}_{i j}=\mu+\alpha_{\mathrm{i}}+\beta_{\mathrm{ij}}+\bar{e}_{i j} \tag{2.1}
\end{equation*}
$$

with $\bar{e}_{i j}=\left(1 / n_{i j}\right) \sum_{n=1}^{n_{i j}} e_{i j k}$. Here \bar{e} is multivariate normally distributed with mean 0 and covariance matrix $\sum(\bar{e})=\mathrm{K} \sigma^{2}$ where $\mathrm{K}=\operatorname{diag}\left(1 / \mathrm{n}_{11} 1 / \mathrm{n}_{12} 1 / \mathrm{n}_{\mathrm{pq}}\right) \quad(2.2)$
The model (2.1) may be written in the matrix notation as

$$
\bar{y}=\mathrm{J}_{\mathrm{pq}} \mu+\mathrm{B}_{1} \alpha+\mathrm{I} \beta+\bar{e}
$$

where $J_{p q}^{-1 / 2}$ is a unit Vector of order pq and $\mathrm{B}_{1}=\operatorname{Diag}\left(\mathrm{J}_{\mathrm{q}}, \ldots \mathrm{J}_{\mathrm{q}}\right)$ (p-times) and J_{q} is a (q $\times 1$) vector with all elements equal to unity. The covariance matrix for \bar{y} turns out to be $\sum(\bar{Y})=\mathrm{B}_{1} B_{1}^{\prime} \sigma_{\alpha}^{2}+I_{p q} \sigma_{\beta}^{2}+\mathrm{K} \sigma_{e}^{2}$
Consider λ an orthogonal matrix P with the property that $\mathrm{PB}_{1} B_{1}^{\prime} P^{\prime}$ is a diagonal matrix with eigen values on the diagonal (Herbach, 1959), The first row of p may be taken as

$$
\begin{aligned}
& (p q)^{-1 / 2}[1,1, \ldots .1] \text {. if } \mathrm{Z}=\mathrm{Py} \text { the covariance matrix for } \mathrm{Z} \text { is } \\
& \sum(Z)=\mathrm{PB}_{1} B_{1}^{\prime} \sigma_{\alpha}^{2}+I_{p q} \sigma_{\beta}^{2}+\mathrm{PKP} \sigma_{e}^{2}
\end{aligned}
$$

III. TEST OF VARIANCE COMPONENTS

We now partition Z in the following way :-
A. $\quad \mathrm{Z}_{1}=(\mathrm{pq})^{1 / 2}$ with the first element in Z .
B. $\quad \mathrm{Z}_{\mathrm{A}}$ consists of $(\mathrm{p}-1)$ elements whose covariance matrix is

$$
\mathrm{I}_{\mathrm{p}-1} \sigma_{\alpha}^{2}+\mathrm{I}_{\mathrm{p}-1} \sigma_{\beta}^{2}+\mathrm{K}_{1} \mathrm{I}_{\mathrm{p}-1} \sigma_{e}^{2}
$$

Where K_{1} is a sub matrix of order ($\mathrm{p}-1$). ($\mathrm{q}-1$) of PKP'.
C. $\quad \mathrm{Z}_{\mathrm{B}}$ consists of $\mathrm{p}(\mathrm{q}-1)$ elements whose covariance matrix is

$$
\mathrm{I}_{\mathrm{p}(\mathrm{q}-1)} \sigma_{\beta}^{2}+\mathrm{K}_{2} \sigma_{e}^{2}
$$

Where K_{2} is a submatrix of order $\mathrm{p}(\mathrm{q}-1) \cdot \mathrm{p}(\mathrm{q}-1)$ of $\mathrm{PKP}^{\prime}(3.2)$. Since P is an orthogonal matrix with first row as (pq$)^{-}$ ${ }^{1 / 2}[1 \ldots 1], \mathrm{EZ}_{\mathrm{A}}=E Z_{\mathrm{B}}=0$.

Now Z_{A} and Z_{B} will be used in testing the hypotheses concerning $\frac{\sigma_{\beta}^{2}}{\sigma_{e}^{2}}$ and $\frac{\sigma_{\alpha}^{2}}{\sigma_{e}^{2}}$.
Test for $\frac{\sigma_{\beta}^{2}}{\sigma_{e}^{2}}$
The covariance matrix $\sum\left(Z_{B}\right)$ can be written as

$$
\left[\mathrm{I}_{\mathrm{p}(q-1)} \Delta_{\beta}+\mathrm{K}_{2}\right] \sigma_{e}^{2} \text { where } \Delta_{\beta}=\frac{\sigma_{\beta}^{2}}{\sigma_{e}^{2}}
$$

Then $\mathrm{Q}_{\mathrm{B}} / \sigma_{e}^{2}=Z_{B}\left[\mathrm{I}_{\mathrm{p}(\mathrm{q}-1)} \Delta_{\beta}+\mathrm{K}_{2}\right]^{-1} \mathrm{Z}_{\mathrm{B}} / \sigma_{e}^{2}$ has a chi-squre distribution with $\mathrm{p}(\mathrm{q}-1)$ degrees of freedom. Let us introduce another orthogonal matrix A such that $\mathrm{AK}_{2} \mathrm{~A}^{\prime}=\mathrm{D}_{2}$ is a diagonal matrix. Consider $Z_{B}^{*}=A Z_{\mathbf{B}}$. The Covariance matrix of Z_{B}^{*} is $\left[\mathrm{I}_{\mathrm{p}(\mathrm{q}-1)} \Delta_{\beta}+\mathrm{D}_{2}\right]$ and therefore

$$
Z_{B}^{\prime}\left[\mathrm{I}_{\mathrm{p}(\mathrm{q}-1)} \Delta_{\beta}+\mathrm{K}_{2}\right]^{-1} \mathrm{Z}_{\mathrm{B}}=Z_{B}^{\prime}\left[\mathrm{I}_{\mathrm{p}(\mathrm{q}-1)} \Delta_{\beta}+\mathrm{D}_{2}\right]^{-1} Z_{B}^{*}
$$

Let us define $\mathrm{Q}=\sum_{i} \sum_{j} \sum_{k}\left(y_{i j k}-y_{i j}\right)^{2}$, then $\mathrm{Q} / \sigma_{e}^{2}$ has a chi-square distribution with ($\mathrm{n}-\mathrm{pq}$) degrees of freedom. Q is independent of Q_{B} and thus $\left[(\mathrm{n}-\mathrm{pq}) \mathrm{Q}_{\mathrm{B}} / \mathrm{Qp}(\mathrm{q}-1)\right]$ has an F -distribution with $\mathrm{p}(\mathrm{q}-1)$ and $(\mathrm{n}-\mathrm{pq})$ degrees of freedom respectively.
For testing the hypotheses $\mathrm{H}_{0}: \Delta_{\beta} \leq \Delta_{0}$ We reject H_{0} if $\mathrm{F}\left(\Delta_{0}\right)$ if larger than upper ($1-\alpha$) quantile of the corresponding F-distribution with $\mathrm{p}(\mathrm{q}-1)$ and $(\mathrm{n}-\mathrm{pq})$ degrees of freedom. The power function is

$$
\begin{gathered}
\mathrm{P}\left(\Delta_{\beta}\right)=\mathrm{P}\left\{(\mathrm{n}-\mathrm{pq})\left[\sum_{i=1}^{p(q-1)} Z_{i B}^{\prime} /\left(\Delta_{0}+d_{i}\right)\right] /[\mathrm{p}(\mathrm{q}-1) \mathrm{Q}] \geq F_{1-\alpha}\right\} \\
\mathrm{P}\left(\Delta_{\beta}\right)=\mathrm{P}\left\{(\mathrm{n}-\mathrm{pq})\left[\sum_{i=1}^{q}\left(\Delta_{\beta}+d_{i}\right) R_{i} /\left(\Delta_{0}+d_{i}\right)\right] /[\mathrm{p}(\mathrm{q}-1) \mathrm{Q}] \geq F_{1-\alpha}\right\}
\end{gathered}
$$

This is an unbiassed size α-test.
(3b) Teat of $\frac{\sigma_{\alpha}^{2}}{\sigma_{e}^{2}}$ assuming $\sigma_{\beta}^{2}=0$
For test of hypothesis $\mathrm{H}_{0}: \frac{\sigma_{\alpha}^{2}}{\sigma_{e}^{2}} \leq \Delta_{0} \quad$ against $\mathrm{H}_{1}: \frac{\sigma_{\alpha}^{2}}{\sigma_{e}^{2}}>\Delta_{0}$
Consider the covariance matrix of $\left[\begin{array}{l}Z_{A} \\ Z_{B}\end{array}\right]$ which is given by

$$
\sum\binom{Z_{A}}{Z_{B}}=\left(\begin{array}{ll}
q I_{p-1} & 0 \\
0 & 0
\end{array}\right) \sigma_{\alpha}^{2}+\left(\begin{array}{ll}
k_{1} & k_{3} \\
k_{3} & k_{2}
\end{array}\right) \sigma_{e}^{2}
$$

Where $\left(\begin{array}{ll}k_{1} & k_{3} \\ k_{3} & k_{2}\end{array}\right)$ is a positive definite marix.
Let us introduce a non-singular matrix H such that

$$
\begin{aligned}
& \mathrm{H}\left(\begin{array}{ll}
k_{1} & k_{3} \\
k_{3} & k_{2}
\end{array}\right) H^{\prime}=\mathrm{I} \text { and } \\
& \mathrm{H}\left(\begin{array}{cc}
q I_{p-1} & 0 \\
0
\end{array}\right) H^{\prime}=\lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots \lambda_{p-1}, 0, \ldots 0\right\} \\
& \text { Define } \mathrm{U}=\binom{U_{A}}{U_{B}}=\mathrm{H}\binom{z_{A}}{z_{B}} \text { and let } \Delta_{\alpha}=\frac{\sigma_{\alpha}^{2}}{\sigma_{e}^{2}}
\end{aligned}
$$

Then $\mathrm{Q}_{A} / \sigma_{e}^{2}=U_{A}^{\prime}\left(\lambda \Delta_{\alpha}+I_{p-1}\right)^{-1} \mathrm{U}_{\mathrm{A}} / \sigma_{s}^{2}$ has a chi-square distribution with ($\mathrm{p}-1$) degrees of freedom. Similarly $Q_{B}^{*}=$ $U_{B}^{\prime} I_{p(q-1)} \mathrm{U}_{\mathrm{B}} / \sigma_{e}^{2}$ has a chi - square distribution with $\mathrm{p}(\mathrm{q}-1)$ degrees of freedom. Further $\mathrm{Q}_{\mathrm{A}}, Q_{B}^{*}$ and Q are independently distributed and therefore $(n-p) Q_{A} /\left[(p-1)\left(Q+Q_{B}\right)\right]$ is distributed as Snedecor's F with $(p-1, n-p)$ degrees of freedom. This is also an unbiased size α-test.

REFERENCES

[1] Graybill, F. and Hultquist, R. A. (1961): Theorems concerning Eisenhart's Model II, Ann. Math. Statist., 32, 261-269.
[2] Herbich, L. H. (1959) : Properties of Type II Analysis of Variance Tests. Ann. Math. Statists., 30. 939-959.
[3] Hocking, R. R., F. M. Speed, and A. T. Coleman. 1980. Hypotheses to be tested with unbalanced data. Communications in Statistics-Theory and Methods 9:117-129.
[4] Frane, J. W. 1979. Some Computing Methods for Unbalanced Analysis of Variance and Covariance. BMDP Technical Report \#52. Los Angeles, CA: BMDP Statistical Software, Inc. Also published in 1980 under the same title in Communications in Statistics-Theory and Methods 9:151-166.
[5] Sawilowsky, Shlomo S.,Blair, R. Clifford A more realistic look at the robustness and Type II error properties of the test to departures from population normality Psychological Bulletin, Vol 111(2), Mar 1992, 352-36
[6] T. W. ANDERSON, Introduction to Multivariate Statistical Analysis, John Wiley, New York, 1958.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

