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Abstract: Consider the two way nested unbalanced random model, 
Yijk = µ + αi+ 휷풊풋 + 풆풊풋풌; i  = 1,2. . .p,  j = 1, 2. .  q and k=1,2,…풏풊풋 
where µ, is a constant and the random variables 휶풊, 휷풊풋and eiik are independently and normally distributed with 

means zero and variances 흈휶ퟐ  , 흈휷ퟐ  and 흈풆ퟐ respectively. In this paper the tests of hypotheses about 
흈휷
ퟐ

흈풆ퟐ
 and 흈휶

ퟐ

흈풆ퟐ
 have 

been discussed. 
Keywords: unbalanced random model, Variance Component, Covariance matrix, orthogonal matrix, optimality. 

I. INTRODUCTION 
The variance components of a two way nested balanced random model are being estimated by equating the mean sum of 
squares of analysis of variance to their expected values. The expected values of mean sum of squares suggest the approximate 
denominator for testing the hypotheses concerning the variance components. However, with the unbalanced data no unique set 
of sum of squares of observations can be optimally used for estimating the variance components. 

In this paper we shall develop some exact tests concerning the variance components in two way nested unbalanced random 
model by using an orthogonal transformation suggested by Graybill and Haultiquist (1961). 

II. TWO WAY UNBALANCED NESTED RANDOM MODEL 
A.  Consider The Model 

Yijk = µ + αi+ 훽  + 푒 ; 
i  = 1,2.. .p, j = 1,  2..  q  and 

k=1,2,…n     ∑ ∑ 푛 =n 
 
Here µ is a constant while훼 , 훽 and eiik are independently and normally distributed with means zero and variances 휎  , 휎  and 
휎  respectively, let us define, 

푦 =(1/푛 )∑ 푦     i = 1,2. . .p,  j  = 1, 2..  q 
 
Then 
                푦  =µ+ αi + βij + 푒̅                                                                             (2.1) 

with 푒̅ = (1/푛 ) ∑ 푒 . Here 푒̅ is multivariate normally distributed with mean 0 and covariance matrix ∑( 푒̅)=K  
where K = diag(1/n11 1/n12 1/npq)  (2.2)               

The model (2.1) may be written in the matrix notation as 
                  푦 = Jpq µ + B1α +Iβ + 푒̅  
where 퐽 /  is a unit Vector of order pq and B1 = Diag (Jq,…Jq) (p-times)  and Jq is a (q x 1) vector with all elements 
equal to unity. The covariance matrix for 푦 turns out to be ∑(푌) = B1 퐵   + Ipq   + K                                
Consider λ an orthogonal matrix P with the property that PB1 퐵 푃  is a diagonal matrix with eigen values on the 
diagonal (Herbach, 1959), The first row of p may be taken as 

       (푝푞) /  [1, 1, … .1]. if Z=Py the covariance matrix for Z is 
       ∑(푍) = PB1 퐵   + Ipq   + PKP’  
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III. TEST OF VARIANCE COMPONENTS 
We now partition Z in the following way :- 

A. Z1 = (pq)1/2 with the first element in Z. 
B. ZA consists of (p-1) elements whose covariance matrix is  

Ip-1  + Ip-1  + K1 Ip-1  
     Where K1 is a sub matrix of order (p-1).(q-1) of PKP'. 

C. ZB consists of p(q-1) elements whose covariance matrix is 
        Ip(q-1)  + K2  

Where 퐾  is a submatrix of order p(q-1) . p(q -1) of PKP' (3.2). Since P is an orthogonal matrix with first row as (pq) -

1/2[1... 1], EZA=EZB=0. 

Now ZA and ZB will be used in testing the hypotheses concerning  and . 

Test for   

The covariance matrix ∑(Z ) can be written as 

                            [Ip(q-1)∆  + K2]   where  ∆ =                

 Then QB/휎 = 푍 , [I ( )∆  +  K ] ZB/휎 has a chi-squre distribution with p(q-1) degrees of freedom. Let us introduce 
another orthogonal matrix A such that AK2A’= D2 is a diagonal matrix. Consider 푍∗  = AZB. The Covariance matrix of 
푍∗   is [Ip(q-1)∆  + D2 ]    and therefore 

푍 [I ( )∆  +  K ] ZB= 푍 [I ( )∆  + D ] 푍∗  
Let us define Q= ∑ ∑ ∑ (푦 − 푦 ) , then Q/휎  has a chi-square distribution with ( n - pq) degrees of freedom. Q is 
independent of QB and             thus [(n – pq) QB/ Qp(q - 1)] has an F-distribution with p(q-1) and (n - pq) degrees of 
freedom respectively. 
For testing the hypotheses H0: ∆ ≤  ∆  We reject H0 if F(∆ ) if larger than upper (1 –α)  quantile of the corresponding 
F-distribution with p(q-1) and (n-pq) degrees of freedom. The power function is  

P(∆ ) = P {(n-pq) [∑ 푍 /(∆ + 푑 )( ) ]/[p(q-1)Q]≥ 퐹 } 
P(∆ ) = P {(n-pq) [∑ (∆ +  푑 )푅 /(∆ + 푑 )]/[p(q-1)Q]≥ 퐹 } 

This is an unbiassed size α-test.  

(3b) Teat of assuming 휎 =0  

   For test of hypothesis H0: ≤  ∆       against H1: > ∆        

 Consider the covariance matrix of  푍푍  which is given by 

∑ =  
           휎  + 휎  

 Where     is a positive definite marix.  
  Let us introduce a non-singular matrix H such that 

H 퐻 = I and 

H  
          퐻 = λ = diag{휆 , … 휆 , 0, … .0 } 

Define U=  = H  and let ∆ =  

Then QA/ 휎  = 푈 (휆∆ + 퐼 )  UA/ 휎  has a chi-square distribution with (p-1) degrees of freedom. Similarly 푄∗  = 
푈 퐼 ( ) UB/ 휎  has a chi – square distribution with p(q-1) degrees of freedom. Further QA, 푄∗  and Q are independently 
distributed and therefore (n - p)QA /[ (p - 1) (Q + QB )] is distributed as Snedecor's F with (p - 1, n-p) degrees of 
freedom. This is also an unbiased size α-test. 
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