Near Mean Labeling of Path Related Splitted Graphs

A. Esakkimuthu
Department of Mathematics, Thiyagi Dharmakkan Amirtham College of Arts and Science, Kannirajapuram Post - 623 135, Ramanathapuram District, Tamilnadu, India

Abstract: The concept of near mean Graph was introduced in [9]. A function f is called a near mean Labeling of graph G if

 $f: V(G) \rightarrow\{0,1,2, \ldots \ldots . q-1, q+1\}$ is injective and the induced function $f^{*}: E(G) \rightarrow\{1,2, \ldots \ldots . . q\}$ defined as$$
f^{*}(e=u v)=\left\{\begin{array}{cl}
\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\
\frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }
\end{array}\right.
$$

is bijective. The graph which admits near mean labeling is called a near mean Graph. In this paper, we proved that $S\left(H_{n}\right)$: (n : odd), $S\left(H_{n}\right)(n:$ even $), S\left(P_{n}^{+}\right)$are near mean graphs.
Keywords: Near mean Labeling, Near mean Graph.
2000 mathematics Subject classification: 05C78

I. INTRODUCTION

We begin with simple, finite, connected and undirected graph $G=(V(G), E(G))$ with p vertices and q edges. For standard terminology and notations we follow (Harary, F., 1972). We will provide brief summary of definitions and other information which are prerequisites for the present investigations.

II. PRELIMINARIES

A function f is called a near mean labeling of graph G if $f: V(G) \rightarrow\{0,1,2, \ldots \ldots . . q\}$ is injective and the induced function $f^{*}: E(G) \rightarrow\{1,2, \ldots \ldots . . q\}$ defined as
$f^{*}(e=u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{cases}$
is bijective. The graph which admits near mean labeling is called a near mean graph.

1) Definition 2.1. Let G be a graph. For each vertex u of a graph G, take a new vertex v. Join v to those vertices of G adjacent to u. The graph thus obtained is called the splitting graph of G. It is denoted by $S(G)$. For a graph G, the splitting graph S of G is obtained by adding a new vertex v corresponding to each vertex u of G such that $N(u)=N(v)$ and it is denoted by $S(G)$.
2) Definition 2.2. Let H_{n}-graph of a path P_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, v_{3}, \ldots \ldots \ldots ., v_{n}$ and $u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots, u_{n}$ by joining the vertices $\frac{v_{\frac{n+1}{2}}}{}$ and $u_{\frac{n+1}{2}}$ by means of an edge if n is odd and vertices $v_{\frac{n}{2}+1}$ and $u_{n / 2}$ if n is even.
3) Definition 2.3. $G_{1} \Theta \quad G_{2}$ of two graphs G_{1} and G_{2} is obtained by taking one copy of G_{1} (with p vertices) and p copies of G_{2} and then joining the $\mathrm{i}^{\text {th }}$ vertex of G_{1} to every vertex in the $\mathrm{i}^{\text {th }}$ copy of G_{2}. When $G_{1}=P_{n}$ and $G_{2}=m K_{1}$ we obtain $\mathrm{P}_{n} \Theta$ mk_{1}.

III. MAIN RESULTS

Theorem 3.1: $\quad \mathrm{S}\left(\mathrm{H}_{n}\right):(n$: odd $)$ is Mean Graph.
Proof: Let $V\left[S\left(H_{n}\right)\right]=\left\{\left(u_{i}, v_{i}, u_{i}{ }^{l}, v_{i}{ }^{l}\right): 1 \leq i \leq n\right\}$

$$
\begin{aligned}
E\left[S\left(H_{n}\right)\right]= & \left\{\left[\left(u_{i} u_{i+1}\right) \cup\left(u_{i}^{l} u_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left[\left(v_{i} u_{i+1}\right) \cup\left(u_{i} v_{i+1}\right) \cup\left(v_{i}^{l} u^{l}{ }_{i+1}\right) \cup\left(u_{i}^{l} v_{i+1}^{l}\right): 1 \leq i \leq n-1\right] \cup\right. \\
& \left.\left(u_{(n+1) / 2} u_{(n+1) / 2}^{l}\right) \cup\left(v_{(n+1) / 2} u_{(n+1) / 2}^{l}\right) \cup\left(u_{(n+1) / 2} v_{(n+1) / 2}^{l}\right)\right\}
\end{aligned}
$$

Let $f: V\left[S\left(H_{n}\right)\right] \rightarrow\{0,1,2, \ldots \ldots ., q\}$ by

$f\left(u_{2 i-1}\right)$	$=2(i-1)$	$1 \leq i \leq[n+1] / 2$
$f\left(u_{2 i}\right)$	$=4 n-1+2(i-1)$	$1 \leq i \leq[n-1] / 2$
$f\left(v_{2 i-1}\right)$	$=4 n-2+2(\mathrm{i}-1)$	$1 \leq i \leq[n+1] / 2$
$f\left(v_{2 i}\right)$	$=2 i-1$	$1 \leq i \leq[n-1] / 2$
$f\left(v_{n+2-2 i}^{\prime}\right)$	$=n+2(i-1)$	$1 \leq i \leq[n+1] / 2$
$f\left(v_{n+1-2 i}^{\prime}\right)$	$=5 n-1+2(i-1)$	$1 \leq i \leq[n-1] / 2$
$f\left(u_{n+1-2 i}^{\prime}\right)$	$=n-1+2 i$	$1 \leq i \leq[n-1] / 2$
$f\left(u_{n+2-2 i}^{\prime}\right)$	$=5 n-2+2(i-1)$	$1 \leq i \leq[n-1] / 2$
$f\left(u_{1}^{\prime}\right)=6 n-2$		

The induced edge labeling are

$f^{*}\left(u_{i} u_{i+1}\right)$	$=2 n+i-1$	$1 \leq i \leq n-1$
$f^{*}\left(u_{2 i-1} v_{2 i}\right)$	$=2 i-1$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(u_{2 i} v_{2 i+1}\right)$	$=4 n+2(i-1)$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(v_{2 i-1} u_{2 i}\right)$	$=4 n-1+2(i-1)$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(v_{2 i} u_{2 i+1}\right)$	$=2 i$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(u^{l}{ }_{n+1-i} u^{l}{ }_{n-i}\right)$	$=3 n+i-1$	$1 \leq i \leq n-1$
$f^{*}\left(v^{l}{ }_{n+2-2 i} u^{l}{ }_{n+1-2 i}\right)$	$=n+2 i-1$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(v^{l}{ }_{n+1-2 i} u^{l}{ }_{n-2 i}\right)$	$=5 n+2(i-1)$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(v^{l}{ }_{n+1-2 i} u^{l}{ }_{n+2-2 i}\right)$	$=5 n-1+2(i-1)$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(v^{l}{ }_{n-2 i} u^{l}{ }_{n+1-2 i}\right)$	$=n+2 i$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(u_{(n+1) / 2} u^{l}{ }_{(n+1) / 2}\right)$	$=3 n-1$	
$f^{*}\left(v_{(n+1) 2} u^{1}{ }_{(n+1) / 2}\right)$	= n	if $n \equiv 3(\bmod 4)$
$f^{*}\left(v_{(n+1) 2} u^{1}{ }_{(n+1) / 2}\right)$	$=5 n-2$	if $n \equiv 1(\bmod 4)$
$f^{*}\left(v^{1}{ }_{(n+1) / 2} u_{(n+1) / 2}\right)$	$=5 n-2$	if $n \equiv 3(\bmod 4)$
$f^{*}\left(v^{1}{ }_{(n+1) / 2} u_{(n+1) / 2}\right)$	= n	if $n \equiv 1(\bmod 4)$

Hence, distinct induced edge labels shows that $S\left(H_{n}\right)$ (n : odd) is a Mean graph. For example, $S\left(H_{5}\right)$ and $S\left(H_{7}\right)$ are Mean Graph an shown in the figure 3.2 and 3.3 respectively.

Figure $3.2 \quad \mathrm{~S}\left(\mathrm{H}_{5}\right): \mathrm{n} \equiv 1(\bmod 4)$

Figure $3.3 \mathrm{~S}\left(\mathrm{H}_{7}\right): \mathrm{n} \equiv 3(\bmod 4)$

Theorem 3.4: $\quad \mathrm{S}\left(\mathrm{H}_{n}\right)$ (n : even) is Mean Graph.
Proof: Let $V\left[S\left(H_{n}\right)\right]=\left\{u_{i}, v_{i}, u_{i}{ }^{l}, v_{i}{ }^{l}: 1 \leq i \leq n\right\}$

$$
\begin{aligned}
E\left[S\left(H_{n}\right)\right]= & \left\{\left[\left(u_{i} u_{i+1}\right) \cup\left(u_{i}^{l} u^{l}{ }_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left(u_{n / 2} u^{l}{ }_{[n / 2]+1}\right) \cup\left[\left(v_{i} u_{i+1}\right) \cup\left(u_{i} v_{i+1}\right): 1 \leq i \leq n-1\right]\right. \\
& \left.\cup\left[\left(v_{i}^{l} u^{l}{ }_{i+1}\right) \cup\left(u_{i}^{l} v^{l}{ }_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left(v_{n / 2} u^{l}{ }_{(n / 2)+1}\right) \cup\left(u_{n / 2} v_{(n / 2)+1}^{l}\right)\right\}
\end{aligned}
$$

Let $f: V\left[S\left(H_{n}\right)\right] \rightarrow\{0,1,2, \ldots \ldots \ldots . ., q\}$

$f\left(u_{2 i-1}\right)$	$=2(i-1)$	$1 \leq i \leq n / 2$
$f\left(u_{2 i}\right)$	$=4 n-1+2(i-1)$	$1 \leq i \leq n / 2$
$f\left(v_{2 i-1}\right)$	$=4 n-2+2(i-1)$	$1 \leq i \leq n / 2$
$f\left(v_{2 i}\right)$	$=2 i-1$	$1 \leq i \leq n / 2$
$f\left(u^{l}{ }_{2 i-1}\right)$		$1 \leq i \leq n / 2$
$f\left(u^{l}{ }_{2 i}\right)$	$=n+2(i-1)$	$1 \leq i \leq[n / 2]-1$
$f\left(u_{n}^{\prime}\right)$		
$f\left(v^{l}{ }_{2 i-1}\right)$		$=6 n-1+2(i-1)$
$f\left(v^{l}{ }_{2 i}\right)$		$=5 n-2+2(i-1)$

The induced edge labeling are

$$
\begin{array}{llc}
f^{*}\left(u_{i} u_{i+1}\right) & =2 n+i-1 & 1 \leq i \leq n-1 \\
f^{*}\left(u_{2 i-1} v_{2 i}\right) & =2 i-1 & 1 \leq i \leq n / 2 \\
f^{*}\left(u_{2 i} v_{2 i+1}\right) & =4 n+2(i-1) & 1 \leq i \leq[n / 2]-1
\end{array}
$$

$f^{*}\left(v_{2 i-1} u_{2 i}\right)$	$=4 n-1+2(i-1)$	$1 \leq i \leq n / 2$
$f^{*}\left(v_{2 i} u_{2 i+1}\right)$	$=2 i$	$1 \leq i \leq[n / 2]-1$
$f^{*}\left(u_{i}^{l} u_{i+1}^{l}\right)$	$=3 n+i-1$	$1 \leq i \leq n-1$
$f^{*}\left(u^{l}{ }_{2 i-}{ }^{1}{ }^{1} \nu^{l}{ }_{2 i}\right)$	$=n+2 i-1$	$1 \leq i \leq n / 2$
$f^{*}\left(u^{1}{ }_{2 i}{ }^{1} v^{1}{ }_{2 i+1}\right)$	$=5 n+2(i-1)$	$1 \leq i \leq[n / 2]-1$
$f^{*}\left(v^{2}{ }_{2 i}{ }^{1}{ }^{1} u^{\prime} u_{2 i}^{l}\right)$	$=5 n-1+2(i-1)$	$1 \leq i \leq n / 2$
$f^{*}\left(v^{1}{ }_{2 i}{ }^{1} u^{l}{ }_{2 i+1}\right)$	$=n+2 i$	$1 \leq i \leq[n / 2]-1$
$f^{*}\left(u_{n / 2} u^{l}{ }_{(n / 2)+1}\right)$	$=3 n-1$	
$f^{*}\left(v_{n / 2} u^{l}{ }_{(n / 2)+1}\right)$	= n	if $n \equiv 0 \bmod 4$
$f^{*}\left(v_{n / 2} u^{l}(n / 2)+1\right)$	$=5 n-2$	if $n \equiv 2 \bmod 4$
$f^{*}\left(u_{n 2} \nu^{1}(n / 2)+1\right)$	$=5 n-2$	if $n \equiv 0 \bmod 4$
$f^{*}\left(u_{n 2} \nu^{1}(n / 2)+1\right)$	$=n$	if $n \equiv 2 \bmod 4$

Hence, distinct induced edge labels shows that $\mathrm{S}\left(\mathrm{H}_{\mathrm{n}}\right)$ (n : even) is a Mean graph. For example, $\mathrm{S}\left(\mathrm{H}_{4}\right)$ and $\mathrm{S}\left(\mathrm{H}_{6}\right)$ are Mean Graphs as shown in the figure 3.5 and 3.6 respectively.

Figure $3.5 \quad \mathrm{~S}\left(\mathrm{H}_{4}\right): \mathrm{n} \equiv 0(\bmod 4)$

Figure 3.6 $\mathrm{S}\left(\mathrm{H}_{6}\right): \mathrm{n} \equiv 2(\bmod 4)$

Theorem 3.7: $\quad \mathrm{S}\left(\mathrm{P}_{n} \Theta 2 \mathrm{k}_{1}\right)$ is Mean Graph.
Proof: Let $V\left[S\left(P_{n} \Theta 2 k_{l}\right)\right]=\left\{\left[\left(u_{i}, v_{i}\right): 1 \leq i \leq n\right] \cup\left[\left(u_{i j}, v_{i j}\right): 1 \leq i \leq n, l \leq j \leq 2\right]\right\}$
$E\left[S\left(P_{n} \Theta 2 k_{1}\right)\right]=\left[\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left[\left(u_{i} u_{i j}\right) \cup\left(v_{i} u_{i j}\right) \cup\left(u_{i} v_{i j}\right): 1 \leq i \leq n, 1 \leq j \leq 2\right] \cup$ $\left[\left(v_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left[\left(u_{i} v_{i+1}\right): 1 \leq i \leq n-1\right.$

$$
\text { Let } f: V\left[S\left(P_{n} \Theta 2 k_{1}\right)\right] \rightarrow\{0,1,2, \ldots \ldots \ldots . ., q\}
$$

Case: (i) when $n \equiv 0(\bmod 2)$

$f\left(u_{2 i-1}\right)$	$=6 i-5$	$1 \leq i \leq n / 2$
$f\left(u_{2 i}\right)$	$=6 n+2+6(i-1)$	$1 \leq i \leq n / 2$
$f\left(v_{2 i-1, l}\right)$	$=6(i-1)$	$1 \leq i \leq n / 2$
$f\left(v_{2 i-1,2}\right)$	$=6 i-4$	$1 \leq i \leq n / 2$
$f\left(u_{2,1}\right)$	$=6 i-3$	$1 \leq i \leq n / 2$
$f\left(u_{2,2}\right)$	$=6 i-1$	$1 \leq i \leq n / 2$
$f\left(v_{2 i}\right)$	$=6 i-2$	$1 \leq i \leq n / 2$
$f\left(v_{2 i-1}\right)$	$=6(n+i)-7$	$1 \leq i \leq n / 2$
$f\left(v_{2 i, 1}\right)$	$=6 n-5+6 i$	$1 \leq i \leq n / 2$
$f\left(v_{2 i, 2}\right)$	$=6 n-3+6 i$	$1 \leq i \leq[n / 2]-1$
$f\left(v_{n, 2}\right)$	$=9 n-2$	
$f\left(u_{2 i-l, l}\right)$	$=6 n-8+6 i$	$1 \leq i \leq n / 2$
$f\left(u_{2 i-1,2}\right)$	$=6 n-6+6 i$	$1 \leq i \leq n / 2$

The induced edge labeling are
$f^{*}\left(u_{2 i-1} v_{2 i-1,1}\right)=6 i-5$
$1 \leq i \leq n / 2$
$f^{*}\left(u_{2 i-1} v_{2 i-1,2}\right)=6 i-4$
$1 \leq i \leq n / 2$
$f^{*}\left(u_{2 i} v_{2 i, l}\right)$
$f^{*}\left(u_{2 i} v_{2 i, 2}\right)$

$$
=6 n-4+6 i
$$

$=6 n-3+6 i$
$=3 n-1+3 i$
$1 \leq i \leq n / 2$
$1 \leq i \leq n / 2$
$1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)$
$=3 n-3+3 i$
$1 \leq i \leq n$
$f^{*}\left(u_{i} u_{i, 1}\right)$
$=3 n-2+3 i$
$1 \leq i \leq n$
$f^{*}\left(v_{2 i} u_{2 i, 1}\right)$
$=6 i-2 \quad 1 \leq i \leq n / 2$
$f^{*}\left(v_{2 i} u_{2 i, 2}\right)$
$f^{*}\left(v_{2 i-1} u_{2 i-1, l}\right)$
$=6 i-1 \quad 1 \leq i \leq n / 2$
$f^{*}\left(v_{2 i-1} u_{2 i-1,2}\right)$
$=6 n-7+6 i$
$1 \leq i \leq n / 2$
$f^{*}\left(v_{2 i-1} u_{2 i}\right)$
$=6(n-1)+6 i \quad 1 \leq i \leq n / 2$
$f^{*}\left(v_{2 i} u_{2 i+1}\right)$
$=6 n-5+6 i$
$1 \leq i \leq n / 2$
$=6 i \quad 1 \leq i \leq[n / 2]-1$
$f^{*}\left(v_{2 i} u_{2 i-1}\right) \quad=6 i-3 \quad 1 \leq i \leq n / 2$
$f^{*}\left(v_{2 i+1} u_{2 i}\right) \quad=6 n-2+6 i \quad 1 \leq i \leq[n / 2]-1$
Hence, distinct induced edge labels shows that $S\left(P_{n} \Theta 2 k_{1}\right)$ (n : even)is a Mean graph. For example, $S\left(P_{4} \Theta 2 k_{1}\right)$ is mean Graphs an shown in the figure 3.5.

Figure $3.8 \mathrm{~S}\left(\mathrm{P}_{4} \Theta 2 \mathrm{k}_{1}\right): \mathrm{n} \equiv 0(\bmod 2)$

Case: (ii) When $n \equiv 1(\bmod 2)$

$f\left(u_{2 i-1}\right)$	$=6 i-5$
$f\left(u_{2 i}\right)$	$=6 n-4+6 i$
$f\left(v_{2 i-1, l}\right)$	$=6(i-1)$
$f\left(v_{2 i-1,2}\right)$	$=6 i-4$
$f\left(v_{2 i, 1}\right)$	$=6(n+i)-5$
$f\left(v_{2,2}\right)$	$=6(n+i)-3$
$f\left(u_{2 i, l}\right)$	$=6 i-3$
$f\left(u_{2 i, 2}\right)$	$=6 i-1$
$f\left(u_{2 i-1, l}\right)$	$=6(n+i)-8$
$f\left(u_{2 i-1,2}\right)$	$=6(n+i-1)$
$f\left(u_{n, 2}\right)$	$=9 n-2$
$f\left(v_{2 i}\right)$	$=6 i-2$
$f\left(v_{2 i-1}\right)$	$=6(n+i)-7$

$$
\begin{aligned}
& 1 \leq i \leq[n+1] / 2 \\
& 1 \leq i \leq[n-1] / 2 \\
& 1 \leq i \leq[n+1] / 2 \\
& 1 \leq i \leq[n+1] / 2 \\
& 1 \leq i \leq[n-1] / 2 \\
& 1 \leq i \leq[n+1] / 2 \\
& 1 \leq i \leq[n-1] / 2 \\
& 1
\end{aligned}
$$

The induced edge labeling are

$f^{*}\left(u_{2 i-1} v_{2 i-1, l}\right)$	$=6 i-5$	$1 \leq i \leq[n+1] / 2$
$f^{*}\left(u_{2 i-1} v_{2 i-1,2}\right)$	$=6 i-4$	$1 \leq i \leq[n+1] / 2$
$f^{*}\left(u_{2 i} v_{2 i, l}\right)$	$=6(n+i)-4$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(u_{2 i} v_{2 i, 2}\right)$	$=6(n+i)-3$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(u_{i} u_{i+1}\right)$	$=3(n+i)-1$	$1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i, l}\right)$	$=3(n+i-1)$	$1 \leq i \leq n$
$f^{*}\left(u_{i} u_{i, 2}\right)$	$=3(n+i)-2$	$1 \leq i \leq n$
$f^{*}\left(v_{2 i} u_{2 i, 1}\right)$	$=6 i-2$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(v_{2 i} u_{2 i, 2}\right)$	$=6 i-1$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(v_{2 i-1} u_{2 i-1,1}\right)$	$=6(n+i)-7$	$1 \leq i \leq[n+1] / 2$
$f^{*}\left(v_{2 i-1} u_{2 i-1,2}\right)$	$=6(n+i-1)$	$1 \leq i \leq[n+1] / 2$
$f^{*}\left(v_{2 i-1} u_{2 i}\right)$	$=6(n+i)-5$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(v_{2 i} u_{2 i+1}\right)$	$=6 i$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(v_{2 i} u_{2 i-1}\right)$	$=6 i-3$	$1 \leq i \leq[n-1] / 2$
$f^{*}\left(v_{2 i+1} u_{2 i}\right)$	$=6(n+i)-2$	$1 \leq i \leq[n-1] / 2$

Hence, distinct induced edge labels shows that $S\left(P_{n} \Theta 2 k_{1}\right)(n: o d d)$ is a Mean graph.
For example, $S\left(P_{3} \Theta 2 k_{l}\right)$ is Mean Graphs an shown in the figure 3.6.

Figure 3.9 $\mathrm{S}\left(\mathrm{P}_{3} \Theta 2 \mathrm{k}_{1}\right): \mathrm{n} \equiv 1(\bmod 2)$

REFERENCES

[1] J.A. Gallian., A Dynamical survey of graphs Labeling, The Electronic Journal of combinatorics. 6(2001) DS6.
[2] F.Harrary, Graph Theory, Adadison-Wesley Publishing Company Inc, USA, 1969.
[3] A.NellaiMurugan - STUDIES IN GRAPH THEORY -SOME LABELING PROBLEMS IN GRAPHS AND RELATED TOPICS,Ph.D, Thesis September 2011...
[4] R.Ponraj, Studies in labeling of graphs Ph.D Thesis submitted to Manonmaniam Sundaranar University, Tirunelveli-12(2004).
[5] A.NellaiMurugan and A.Esakkimuthu ., Path Related Near Mean Splitted Graphs, A Multi-Disciplinary Refereed Journal, OUTREACH, Volume VII, 2014, Pp. 155-160.
[6] A.NellaiMurugan.A, and A. Nagarajan., Near Meanness on Family of trees, International Journal of Ultra Scientist of Physiccal Sciences, Vol.22. No.3, 2010, 775-780.
[7] A.NellaiMurugan, A. Nagarajan and S.Navaneetha Krishan, Meanness on Special class of Graphs, outreach, A multidisciplinary Refreed Journal, Vol. IV, 20102011, 30-32.
[8] A. Nagarajan, A.NellaiMurugan and A.Subramanian., Near meanness on product Graphs, Scientia Magna,Vol.6(2010),No.3, 40-49.
[9] A.NellaiMurugan and A. Nagarajan and S.Navaneetha Krishan, On Near Mean Graphs, International J.Math.Comb Vol.4, 2010, 94-99.
[10] A.NellaiMurugan and A. Nagarajan, Near Meanness of join of Graph, International journal of Mathematics Research, Vol.3,No.4 (2011), 373-380.
[11] Selvam Avudaiappan and Vasukir.R, Some result of mean Graphs, Ultra Scientist of Physical sciences, 21(1), M (2009), 273-284.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

