

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: IV Month of publication: April 2018

DOI: http://doi.org/10.22214/ijraset.2018.4384

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Near Mean Labeling of Path Related Splitted Graphs

A. Esakkimuthu

Department of Mathematics, Thiyagi Dharmakkan Amirtham College of Arts and Science, Kannirajapuram Post – 623 135, Ramanathapuram District, Tamilnadu, India

Abstract: The concept of near mean Graph was introduced in [9]. A function f is called a near mean Labeling of graph G if $f:V(G) \rightarrow \{0, 1, 2, \dots, q-1, q+1\}$ is injective and the induced function $f^*: E(G) \rightarrow \{1, 2, \dots, q\}$ defined as

$$f^{*}(e = uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

is bijective. The graph which admits near mean labeling is called a near mean Graph. In this paper, we proved that $S(H_n)$: (n: odd), $S(H_n)$ (n: even), $S(P_n^+)$ are near mean graphs.

Keywords: Near mean Labeling, Near mean Graph. 2000 mathematics Subject classification: 05C78

I. INTRODUCTION

We begin with simple, finite, connected and undirected graph G = (V(G), E(G)) with p vertices and q edges. For standard terminology and notations we follow (Harary, F., 1972). We will provide brief summary of definitions and other information which are prerequisites for the present investigations.

II. PRELIMINARIES

A function f is called a *near mean labeling* of graph G if $f:V(G) \to \{0, 1, 2, \dots, q\}$ is injective and the induced function $f^*: E(G) \to \{1, 2, \dots, q\}$ defined as

 $f^*(e = uv) = \begin{cases} \frac{f(u)+f(v)}{2} & \text{if } f(u) + f(v) \text{is even} \\ \frac{f(u)+f(v)+1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$ is bijective. The graph which admits near mean labeling is called a *near*

mean graph.

- 1) Definition 2.1. Let G be a graph. For each vertex u of a graph G, take a new vertex v. Join v to those vertices of G adjacent to u. The graph thus obtained is called the *splitting graph* of G. It is denoted by S(G). For a graph G, the splitting graph S of G is obtained by adding a new vertex v corresponding to each vertex u of G such that N(u) = N(v) and it is denoted by S(G).
- 2) Definition 2.2. Let H_n –graph of a path P_n is the graph obtained from two copies of P_n with vertices $v_1, v_2, v_3, \dots, v_n$ and $u_1, u_2, u_3, \dots, u_n$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ by means of an edge if n is odd and vertices $v_{\frac{n}{2}+1}$ and $u_{n/2}$ if n is even.
- 3) Definition 2.3. $G_1 \Theta G_2$ of two graphs G_1 and G_2 is obtained by taking one copy of G_1 (with p vertices) and p copies of G_2 and then joining the ith vertex of G_1 to every vertex in the ith copy of G_2 . When $G_1 = P_n$ and $G_2 = mK_1$ we obtain $P_n \Theta mk_1$.

III. MAIN RESULTS

Theorem 3.1: $S(H_n) : (n: \text{ odd})$ is Mean Graph. Proof: Let $V[S(H_n)] = \{(u_i v_i, u_i^1, v_i^1) : 1 \le i \le n\}$ $E[S(H_n)] = \{[(u_i u_{i+1}) \cup (u_i^1 u_{i+1}) : 1 \le i \le n-1] \cup [(v_i u_{i+1}) \cup (u_i v_{i+1}) \cup (v_i^1 u_{i+1}^1) \cup (u_i^1 v_{i+1}^1) : 1 \le i \le n-1] \cup (u_{(n+1)/2} u_{(n+1)/2}^1 \cup (v_{(n+1)/2} u_{(n+1)/2}^1 \cup (u_{(n+1)/2} v_{(n+1)/2}^1)] \}$ Let $f: V[S(H_n)] \rightarrow \{0, 1, 2, ..., n, q\}$ by

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

Volume 6 Issue IV, April 2018- Available at www.ijraset.com

$f(u_{2i-1})$	= 2(i-1)	$1 \leq i \leq [n+1]/2$
$f(u_{2i})$	= 4n - 1 + 2(i - 1)	$1 \le i \le [n-1]/2$
$f(v_{2i-1})$	= 4n - 2 + 2(i - 1)	$1 \leq i \leq [n+1]/2$
$f(v_{2i})$	= 2 <i>i</i> – 1	$1 \le i \le [n-1]/2$
$f(v_{n+2-2i}')$	= n + 2(i - 1)	$1 \le i \le [n+1]/2$
$f(v_{n+1-2i}')$	= 5n - 1 + 2(i - 1)	$1 \le i \le [n-1]/2$
$f(u_{n+1-2i}')$	= n - 1 + 2i	$1 \le i \le [n-1]/2$
$f(u_{n+2-2i}')$	= 5n - 2 + 2(i - 1)	$1 \le i \le [n-1]/2$
$f(u_1')=6n-2$		

The induced edge labeling are

$f^*(u_iu_{i+1})$	= 2n+i-1	$1 \le i \le n-1$
$f^{*}(u_{2i-1}v_{2i})$	= 2 <i>i</i> -1	$1 \le i \le [n-1]/2$
$f^*(u_{2i}v_{2i+1})$	= 4n + 2(i - 1)	$1 \le i \le [n-1]/2$
$f^*(v_{2i-1}u_{2i})$	=4n-1+2(i-1)	$1 \le i \le [n-1]/2$
$f^*(v_{2i}u_{2i+1})$	= 2i	$1 \le i \le [n-1]/2$
$f^*(u_{n+1-i}^{l}u_{n-i}^{l})$	= 3n+i-1	$1 \le i \le n - 1$
$f^*(v_{n+2-2i}^l u_{n+1-2i}^l)$	= n + 2i - 1	$1 \le i \le [n-1]/2$
$f^{*}(v_{n+1-2i}^{l}u_{n-2i}^{l})$	= 5n+2(i-1)	$1 \le i \le [n-1]/2$
$f^{*}(v_{n+1-2i}^{l}u_{n+2-2i}^{l})$	= 5n-1+2(i-1)	$1 \le i \le [n-1]/2$
$f^*(v_{n-2i}^l u_{n+1-2i}^l)$	= n+2i	$1 \le i \le [n-1]/2$
$f^{*}(u_{(n+1)/2}u^{l}_{(n+1)/2})$	= 3n-1	
$f^{*}(v_{(n+1)/2}u^{l}_{(n+1)/2})$	= n	if $n \equiv 3 \pmod{4}$
$f^{*}(v_{(n+1)/2}u^{l}_{(n+1)/2})$	= 5n-2	if $n \equiv 1 \pmod{4}$
$f^*(v_{(n+1)/2}^1 u_{(n+1)/2})$	= 5n-2	if $n \equiv 3 \pmod{4}$
$f^{*}(v_{(n+1)/2}^{1}u_{(n+1)/2})$	= n	if $n \equiv 1 \pmod{4}$

Hence, distinct induced edge labels shows that $S(H_n)$ (n : odd) is a Mean graph. For example, $S(H_5)$ and $S(H_7)$ are Mean Graph an shown in the figure 3.2 and 3.3 respectively.

Figure 3.2 $S(H_5): n \equiv 1 \pmod{4}$

Figure 3.3 $S(H_7)$: $n \equiv 3 \pmod{4}$

$S(H_n) (n : even) is Mea H_n)] = \{u_i, v_i, u_i^{-1}, v_i^{-1} : 1 \le i \\ u_i u_{i+1}) \cup (u_i^{-1} u_{i+1}^{-1}) : 1$	an Graph. $i \le n$ } $\le i \le n-1$] $\cup (u_{n/2}u^{l}_{[n/2]+1}) \cup [(v_{i}u_{i+1}) \cup (u_{i}v_{i+1}) : 1 \le i \le n-1]$
$[(v_i \ u_{i+1}) \cup (u_i \ v_{i+1})]$	$: I \leq l \leq n-1 \} \cup (v_{n/2}u_{(n/2)+1}) \cup (u_{n/2}v_{(n/2)+1}) \}$
$\rightarrow \{0, 1, 2, \dots, q\}$	
= 2(i-1)	$1 \le i \le n/2$
= 4n - 1 + 2(i - 1)	$1 \le i \le n/2$
= 4n-2+2(i-1)	$1 \le i \le n/2$
= 2i - 1	$1 \le i \le n/2$
= n + 2(i - 1)	$1 \le i \le n/2$
= 5n-1+2(i-1)	$1 \le i \le \lfloor n/2 \rfloor - 1$
= 6 <i>n</i> -2	
= 5n-2+2(i-1)	$1 \le i \le n/2$
= n + 1 + 2(i - 1)	$1 \le i \le n/2$
e labeling are	
= 2n+i-1	$1 \le i \le n-1$
= 2 <i>i</i> -1	$1 \le i \le n/2$
=4n+2(i-1)	$1 \le i \le \lfloor n/2 \rfloor - 1$
	$\begin{split} & S(H_n) \ (n : \text{even}) \text{ is Me} \\ & I_n)] = \{u_{i}, v_{i}, u_{i}^{1}, v_{i}^{1} : 1 \leq u_{i}, u_{i+1}\} \cup (u_{i}^{1}u_{i+1}^{1}) : 1 \\ & (v_{i}^{1}u_{i+1}^{1}) \cup (u_{i}^{1}u_{i+1}^{1}) : 1 \\ & (v_{i}^{1}u_{i+1}^{1}) \cup (u_{i}^{1}v_{i+1}^{1}) \\ & \rightarrow \{0, 1, 2, \dots, q\} \\ & = 2(i-1) \\ & = 4n \cdot 1 + 2(i-1) \\ & = 4n \cdot 2 + 2(i-1) \\ & = 2i \cdot 1 \\ & = n + 2(i-1) \\ & = 6n \cdot 2 \\ & = 5n \cdot 2 + 2(i-1) \\ & = n + 1 + 2(i-1) \\ & = aheling \ are \\ & = 2n + i \cdot 1 \\ & = 2i \cdot 1 \\ & = 2i \cdot 1 \\ & = 4n + 2(i-1) \end{split}$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

$f^{*}(v_{2i-1}u_{2i})$	= 4n - 1 + 2(i - 1)	$1 \le i \le n/2$
$f^{*}(v_{2i}u_{2i+1})$	= 2i	$1 \le i \le [n/2] - 1$
$f^{*}(u_{i}^{l}u_{i+1}^{l})$	= 3n+i-1	$1 \le i \le n-1$
$f^*(u^1_{2i-1}v^1_{2i})$	= n + 2i - 1	$1 \le i \le n/2$
$f^*(u^1_{2i}v^1_{2i+1})$	= 5n+2(i-1)	$1 \le i \le \lfloor n/2 \rfloor - 1$
$f^*(v_{2i-1}^{l}u_{2i}^{l})$	= 5n-1+2(i-1)	$1 \le i \le n/2$
$f^*(v_{2i}^l u_{2i+1}^l)$	= n+2i	$1 \le i \le \lfloor n/2 \rfloor - 1$
$f^*(u_{n/2}u^1_{(n/2)+1})$	= 3 <i>n</i> -1	
$f^*(v_{n/2}u^1_{(n/2)+1})$	= n	if $n \equiv 0 \mod 4$
$f^*(v_{n/2}u^1_{(n/2)+1})$	= 5 <i>n</i> -2	if $n \equiv 2 \mod 4$
$f^*(u_{n/2}v_{(n/2)+1}^1)$	= 5n-2	if $n \equiv 0 \mod 4$
$f^*(u_{n/2}v_{(n/2)+1}^1)$	= n	if $n \equiv 2 \mod 4$

Hence, distinct induced edge labels shows that $S(H_n)$ (n : even) is a Mean graph. For example, $S(H_4)$ and $S(H_6)$ are Mean Graphs as shown in the figure 3.5 and 3.6 respectively.

Figure 3.5 $S(H_4)$: $n \equiv 0 \pmod{4}$

Figure 3.6 $S(H_6) : n \equiv 2 \pmod{4}$

Factor: 6.887 w.ijraset.com

THE REPORT			ISSN: 2321-9653; Volume 6 Issue IV,	IC Va April	lue: 2018	45.98; 3- Ava	ilabl	lmpa e at v	ct Fa vww.	ctor. ijras	: 6.88. set.con
Theorem 3.7:	$S(P_n \Theta 2k_1)$ is Mean Grap	oh.									
Proof: Let V/S	$(P_n \Theta 2k_1) = \{ [(u_i, v_i) : 1 \}$	$< i < n] \cup [(u_{ii}, v_{ii}) : 1 < i < i$	n. 1 < j < 21 }								
$E[S(P_n\Theta \ 2k_1)]$	$u_{i} = [(u_{i}u_{i+1}) : 1]$	$\leq i \leq n-1 \cup [(u_iu_{ii}) \cup$	$(v_i u_{ii}) \cup (u_i v_{ii})$: 1	<	i ≤	n,	1	≤ i	<	$21 \cup$
$[(v_{i}u_{i+1}): 1 \le i]$	$< n-1] \cup [(u_i v_{i+1}) :] <$	 ≤i <n-1< td=""><td></td><td></td><td></td><td></td><td>,</td><td></td><td>- 5</td><td></td><td>1</td></n-1<>					,		- 5		1
Let $f: $	$V[S(P_n\Theta 2k_1)] \rightarrow \{0, 1, 2\}$										
Case: (i) when	$n \equiv 0 \pmod{2}$										
$f(u_{2i-1})$	= 6i-5	$1 \le i \le n/2$									
$f(u_{2i})$	= 6n+2+6(i-1)	$1 \le i \le n/2$									
$f(v_{2i-1,1})$	= 6(i-1)	$1 \le i \le n/2$									
$f(v_{2i-1,2})$	= 6i-4	$1 \le i \le n/2$									
$f(u_{2i,1})$	= 6 <i>i</i> -3	$1 \le i \le n/2$									
$f(u_{2i,2})$	= 6 <i>i</i> -1	$1 \le i \le n/2$									
$f(v_{2i})$	= 6i-2	$1 \le i \le n/2$									
$f(v_{2i-1})$	= 6(n+i)-7	$1 \le i \le n/2$									
$f(v_{2i,1})$	= 6n-5+6i	$1 \le i \le n/2$									
$f(v_{2i,2})$	= 6n-3+6i	$1 \le i \le \lfloor n/2 \rfloor - 1$									
$f(v_{n,2})$	= 9n-2										
$f(u_{2i-1,1})$	= 6n-8+6i	$1 \le i \le n/2$									
$f(u_{2i-1,2})$	= 6n-6+6i	$1 \le i \le n/2$									
The induced edg	ge labeling are										
$f^*(u_{2i-1}v_{2i-1,1})$	= <i>6i-5</i>	$1 \le i \le n/2$									
$f^*(u_{2i-1}v_{2i-1,2})$	= <i>6i-4</i>	$1 \le i \le n/2$									
$f^{*}(u_{2i}v_{2i,1})$	= 6n-4+6i	$1 \le i \le n/2$									
$f^{*}(u_{2i}v_{2i,2})$	= 6n-3+6i	$1 \le i \le n/2$									
$f^*(u_iu_{i+1})$	= 3n - 1 + 3i	$1 \le i \le n-1$									
$f^*(u_i u_{i,1})$	= 3n-3+3i	$1 \le i \le n$									
$f^*(u_i u_{i,2})$	= 3n-2+3i	$1 \le i \le n$									
$f^*(v_{2i}u_{2i,1})$	= 6 <i>i</i> -2	$1 \le i \le n/2$									
$f^*(v_{2i}u_{2i,2})$	= 6 <i>i</i> -1	$1 \le i \le n/2$									
$f^{*}(v_{2i-1}u_{2i-1,1})$	= 6n-7+6i	$1 \le i \le n/2$									
$f^{*}(v_{2i-1}u_{2i-1,2})$	= 6(n-1)+6i	$1 \le i \le n/2$									
$f^*(v_{2i-1}u_{2i})$	= 6n-5+6i	$1 \le i \le n/2$									
$f^*(v_{2i}u_{2i+1})$	= <i>6i</i>	$1 \le i \le [n/2] - 1$									
$f^{*}(v_{2i}u_{2i-1})$	= 6 <i>i</i> -3	$1 \le i \le n/2$									
$f^{*}(v_{2i+1}u_{2i})$	= 6n-2+6i	$1 \le i \le \lfloor n/2 \rfloor - 1$									

Hence, distinct induced edge labels shows that $S(P_n \Theta 2k_1)$ (n : even) is a Mean graph. For example, $S(P_4 \Theta 2k_1)$ is mean Graphs an shown in the figure 3.5.

Figure 3.8 S(P₄ Θ 2k₁): n \equiv 0 (mod 2)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

Case: (ii) When $n \equiv 1 \pmod{2}$

$f(u_{2i-1})$	= <i>6i-5</i>	$1 \le i \le [n+1]/2$
$f(u_{2i})$	= 6n-4+6i	$1 \le i \le [n-1]/2$
$f(v_{2i-1,1})$	= 6(i-1)	$1 \le i \le [n+1]/2$
$f(v_{2i-1,2})$	= 6i-4	$1 \le i \le [n+1]/2$
$f(v_{2i,1})$	= 6(n+i)-5	$1 \le i \le [n-1]/2$
$f(v_{2i,2})$	= 6(n+i)-3	$1 \le i \le [n-1]/2$
$f(u_{2i,1})$	= <i>6i-3</i>	$1 \le i \le [n-1]/2$
$f(u_{2i,2})$	= 6 <i>i</i> -1	$1 \le i \le [n-1]/2$
$f(u_{2i-1,1})$	= 6(n+i)-8	$1 \le i \le [n+1]/2$
$f(u_{2i-1,2})$	= 6(n+i-1)	$1 \le i \le [n-1]/2$
$f(u_{n,2})$	= 9n-2	
$f(v_{2i})$	= <i>6i-2</i>	$1 \le i \le [n-1]/2$
$f(v_{2i-1})$	= 6(n+i)-7	$1 \le i \le [n+1]/2$
The induced edge l	abeling are	
$f^{*}(u_{2i-1}v_{2i-1,1})$	= 6 <i>i</i> -5	$1 \le i \le [n+1]/2$
$f^{*}(u_{2i-1}v_{2i-1,2})$	= 6 <i>i</i> -4	$1 \le i \le [n+1]/2$
$f^*(u_{2i}v_{2i,1})$	= 6(n+i)-4	$1 \le i \le [n-1]/2$
$f^{*}(u_{2i}v_{2i,2})$	= 6(n+i)-3	$1 \le i \le [n-1]/2$
$f^*(u_iu_{i+1})$	= 3(n+i)-1	$1 \le i \le n-1$
$f^*(u_iu_{i,1})$	= 3(n+i-1)	$1 \le i \le n$
$f^*(u_i u_{i,2})$	= 3(n+i)-2	$1 \le i \le n$
$f^{*}(v_{2i}u_{2i,1})$	= 6 <i>i</i> -2	$1 \le i \le [n-1]/2$
$f^{*}(v_{2i}u_{2i,2})$	= 6 <i>i</i> -1	$1 \le i \le [n-1]/2$
$f^{*}(v_{2i-1}u_{2i-1,1})$	= 6(n+i)-7	$1 \le i \le [n+1]/2$
$f^{*}(v_{2i-1}u_{2i-1,2})$	= 6(n+i-1)	$1 \le i \le [n+1]/2$
$f^{*}(v_{2i-1}u_{2i})$	= 6(n+i)-5	$1 \le i \le [n-1]/2$
$f^{*}(v_{2i}u_{2i+1})$	= <i>6i</i>	$1 \le i \le [n-1]/2$
$f^{*}(v_{2i}u_{2i-1})$	= 6 <i>i</i> -3	$1 \le i \le [n-1]/2$
$f^{*}(v_{2i+1}u_{2i})$	= 6(n+i)-2	$1 \le i \le [n-1]/2$

Hence, distinct induced edge labels shows that $S(P_n \Theta 2k_1)$ (*n* : *odd*) is a Mean graph. For example, $S(P_3 \Theta 2k_1)$ is Mean Graphs an shown in the figure 3.6.

Figure 3.9 S(P₃ Θ 2k₁): n \equiv 1 (mod 2)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

[1]

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

REFERENCES

- J.A. Gallian., A Dynamical survey of graphs Labeling, The Electronic Journal of combinatorics. 6(2001) DS6.
- [2] F.Harrary, Graph Theory, Adadison-Wesley Publishing Company Inc, USA, 1969.
- [3] A.NellaiMurugan STUDIES IN GRAPH THEORY –SOME LABELING PROBLEMS IN GRAPHS AND RELATED TOPICS, Ph.D, Thesis September 2011...
- [4] R.Ponraj, Studies in labeling of graphs Ph.D Thesis submitted to Manonmaniam Sundaranar University, Tirunelveli-12(2004).
- [5] A.NellaiMurugan and A.Esakkimuthu ., Path Related Near Mean Splitted Graphs, A Multi-Disciplinary Refereed Journal, OUTREACH, Volume VII, 2014, Pp. 155 – 160.
- [6] A.NellaiMurugan.A, and A. Nagarajan., Near Meanness on Family of trees, International Journal of Ultra Scientist of Physiccal Sciences, Vol.22. No.3, 2010, 775-780.
- [7] A.NellaiMurugan, A. Nagarajan and S.Navaneetha Krishan, Meanness on Special class of Graphs, outreach, A multidisciplinary Refreed Journal, Vol. IV, 2010-2011, 30-32.
- [8] A. Nagarajan, A.NellaiMurugan and A.Subramanian., Near meanness on product Graphs, Scientia Magna, Vol.6(2010), No.3, 40-49.
- [9] A.NellaiMurugan and A. Nagarajan and S.Navaneetha Krishan, On Near Mean Graphs, International J.Math.Comb Vol.4, 2010, 94-99.
- [10] A.NellaiMurugan and A. Nagarajan, Near Meanness of join of Graph, International journal of Mathematics Research, Vol.3, No.4 (2011), 373-380.
- [11] Selvam Avudaiappan and Vasukir.R, Some result of mean Graphs, Ultra Scientist of Physical sciences, 21(1), M (2009), 273-284.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)