Regular Intuitionistic Fuzzy Graph Structure

P.K. Sharma ${ }^{1}$, Vandana Bansal ${ }^{2}$, D.S. Pathania ${ }^{3}$
${ }^{1}$ P.G. Department of Mathematics, D.A.V. College, Jalandhar City, Punjab, India
${ }^{2}$ Corresponding Author, R S, IKG PT University, Jalandhar; Deptt. of Mathematics, Ramgarhia college , Phagwara, Punjab, India;
${ }^{3}$ Deptt. Of Applied Sciences, GNDEC, Ludhiana, Punjab, India.

Abstract

In this paper, we discuss the notion order, degree and size of a vertex in intuitionistic fuzzy graph structure (IFGS) \tilde{G} and their properties are studied. We also study the concept of regularity in intuitionistic fuzzy graph structures. Some characterization of regular IFGS on B_{i}-cycle are also provided and properties of regular IFGS are introduced. Keywords: Order, degree, size of vertex, regular IFGS.

2010 Mathematics Subject Classification: 05C72, 05C76, 05C38, 03F55. $03 E 72$.

I. INTRODUCTION

The idea of fuzzy sets was introduced by Prof. Zadeh [8] in 1965. Rosenfeld [9] in 1975 gave the concept of fuzziness in relations and graphs. Atanassov [5] introduced the idea of intuitionistic fuzzy sets. Further the notion of graph structure was discussed by Sampathkumar [1]. Dinesh and Ramakrishnan [2] gave fuzzy graph structure. The notion of intuitionistic fuzzy graph structure (IFGS) $\tilde{G}=\left(\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{k}}\right)$ are defined and discussed by the authors in [6],[7] and [14]. In this paper, we discussed various properties of regularity in intuitionistic fuzzy graph structures.

II. PRELIMINARIES

In this section, we review some definitions and results that are necessary in this paper, which are mainly taken from [1], [2], [6] [14].

1) Definition (2.1): An intuitionistic fuzzy graph (IFG) is of the form $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where
a) $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ such that $\mu_{1}: \mathrm{V} \rightarrow[0,1]$ and $\gamma_{1}: \mathrm{V} \rightarrow[0,1]$ denote the degree of membership and non membership of the element $\mathrm{v}_{\mathrm{i}} \in \mathrm{V}$, respectively and $0 \leq \mu_{1}\left(\mathrm{v}_{\mathrm{i}}\right)+\gamma_{1}\left(\mathrm{v}_{\mathrm{i}}\right) \leq 1$, for every $\mathrm{v}_{\mathrm{i}} \in \mathrm{V}$, $(\mathrm{i}=1,2, \ldots, \mathrm{n})$,
b) $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$ where $\mu_{2}: \mathrm{V} \times \mathrm{V} \rightarrow[0,1]$ and $\gamma_{2}: \mathrm{V} \times \mathrm{V} \rightarrow[0,1]$ are such that $\mu_{2}\left(v_{i}, v_{j}\right) \leq \min \left\{\mu_{1}\left(v_{i}\right), \mu_{1}\left(v_{j}\right)\right\}$ and $\gamma_{2}\left(v_{i}, v_{j}\right) \leq \max \left\{\gamma_{1}\left(v_{i}\right), \gamma_{1}\left(v_{j}\right)\right\}$ and $0 \leq \mu_{2}\left(v_{i}, v_{j}\right)+\gamma_{2}\left(v_{i}, v_{j}\right) \leq 1$, for every $\left(v_{i}, v_{i}\right) \in E,(i, j=1,2, \ldots, n)$,
2) Definition (2.2): Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an IFG. Then the degree of a vertex v is defined by $\mathrm{d}(\mathrm{v})=\left(\mathrm{d} \mu(\mathrm{v}), \mathrm{d} \gamma(\mathrm{v})\right.$) where $\mathrm{d} \mu(\mathrm{v})=\sum_{\mathrm{u} \neq \mathrm{v}} \mu_{2}(\mathrm{v}, \mathrm{u})$ and $\mathrm{d} \gamma(\mathrm{v})=\sum_{\mathrm{u} \neq \mathrm{v}} \gamma_{2}(\mathrm{v}, \mathrm{u})$.
3) Definition (2.3): G is said to be regular fuzzy graph if each vertex has same fuzzy degree. It is said to be k-regular fuzzy graph if $(\mathrm{fd})(\mathrm{v})=\mathrm{k}, \forall v \in \mathrm{~V}$.
4) Definition (2.4): An Intuitionistic fuzzy graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is said to be regular IFG if all the vertices have the same degree.
5) Definition (2.5): An Intuitionistic fuzzy graph is complete if
$\mu_{2 \mathrm{ij}}=\min \left(\mu_{\mathrm{ij}}, \mu_{\mathrm{lj}}\right)$ and $\gamma_{2 \mathrm{ij}}=\max \left(\gamma_{2 \mathrm{i}}, \gamma_{2 \mathrm{j}}\right)$ for all $(\mathrm{vi}, \mathrm{vj}) \in \mathrm{V}$.
6) Definition(2.6):The minimum degree of G is $\delta(\mathrm{G})=(\delta \mu(\mathrm{G}), \delta \gamma(\mathrm{G}))$ where $\delta \mu(\mathrm{G})=\Lambda\{\mathrm{d} \mu(\mathrm{v}) / \mathrm{v} \in \mathrm{V}\}$ and $\delta \gamma(\mathrm{G})=\Lambda\{\mathrm{d} \gamma(\mathrm{v}) / \mathrm{v}$ $\in \mathrm{V}\}$.
7) $\operatorname{Definition(2.7):The~maximum~degree~of~} \mathrm{G}$ is $\Delta(\mathrm{G})=(\Delta \mu(\mathrm{G}), \Delta \gamma(\mathrm{G}))$ where
$\Delta \mu(\mathrm{G})=\mathrm{V}\{\mathrm{d} \mu(\mathrm{v}) / \mathrm{v} \in \mathrm{V}\}$ and $\Delta \gamma(\mathrm{G})=\mathrm{V}\{\mathrm{d} \gamma(\mathrm{v}) / \mathrm{v} \in \mathrm{V}\}$.
8) Definition (2.8): Let $\mathrm{G}=\left(\mathrm{V}, \mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{k}}\right)$ be a graph structure and let A be an intuitionistic fuzzy subset (IFS) on V and $\mathrm{B}_{1}, \mathrm{~B}_{2}$,..., B_{k} are intuitionistic fuzzy relations (IFR) on V which are mutually disjoint, symmetric and irreflexive such that

$$
\mu_{B_{i}}(u, v) \leq \mu_{\mathrm{A}}(u) \wedge \mu_{\mathrm{A}}(v) \text { and } v_{B_{i}}(u, v) \leq v_{A}(u) \vee v_{\mathrm{A}}(v) \quad \forall u, v \in \mathrm{~V} \text { and } i=1,2, \ldots, \mathrm{k} .
$$

$\tilde{\boldsymbol{G}}=\left(\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right)$ is an intuitionistic fuzzy graph structure (IFGS) of G .
9) Note(2.9): Throughout this paper, unless otherwise specified $\tilde{G}=\left(A, B_{1}, B_{2}, \ldots, B_{k}\right)$ will represent an intuitionistic fuzzy graph structure with respect to graph structure $G=\left(V, R_{1}, R_{2}, \ldots, R_{k}\right)$ and $i=1,2, \ldots, k$ will refer to the number of intuitionistic fuzzy relations on V .
10) Definition (2.10): The $\mu_{B_{i}}$-strength of connectedness between u and v is $\mu_{B_{i}}^{\infty}(u, v)={ }_{j=1}^{\infty} \mu_{B_{i}}{ }^{j}(u, v)$. and the $v_{B_{i}}$-strength of

III.REGULAR INTUITIONISTIC FUZZY GRAPH STRUCTURE

1) Definition (3.1): Let $\tilde{G}=\left(\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}\right)$ be an intuitionistic fuzzy graph structure (IFGS) of G . The $\mu_{B_{1}}$ - degree of vertex u is the sum of $\mu_{B_{i}}$-edge starting from u. It is denoted by $d_{\mu_{B_{i}}}(u)$. Thus, $d_{\mu_{B_{i}}}(u)=\sum_{(u, v) \in B_{i}} \mu_{B_{i}}(u, v)$.
2) Definition (3.2): In an IFGS, the $v_{B_{-}}$- degree of vertex u is the sum of $v_{R_{R}}$-edge starting from u. It is denoted by $d_{v_{B}}(u)$. Thus, $d_{v_{B_{i}}}(u)=\sum_{(u, v) \in B_{i}} v_{B_{i}}(u, v)$.
3) Definition (3.3): The B_{i}-degree of vertex u is $d_{B_{i}}(u)=\left(d_{\mu_{B_{i}}}(u), d_{v_{B_{i}}}(u)\right)$

Or $\quad d_{B_{i}}(u)=\left(\sum_{(u . v) \in B_{i}} \mu_{B_{i}}(u, v), \sum_{(u, v) \in B_{i}} v_{B_{i}}(u, v)\right)$ and $\mu_{B_{i}}(u, v)=v_{B_{i}}(u, v)=0 \quad$ for $(u, v) \notin B_{i}$.
4) Definition (3.4): Let $\tilde{G}=\left(\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots ., \mathrm{B}_{\mathrm{k}}\right)$ be an IFGS of G . The degree of vertex u is the sum of B_{i}-degrees of u for various i. i.e., Degree of vertex u of $\tilde{G}=\mathrm{d}(u)=\sum_{i=1}^{k} d_{B_{i}}(u)=\left(\sum_{i=1}^{k} d_{\mu_{B_{i}}}(u), \sum_{i=1}^{k} d_{v_{B_{i}}}(u)\right)$.
5) Example (3.5): Consider an IFGS $\ddot{G}=\left(\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}\right)$ such that $\mathrm{V}=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. Let $\mathrm{R}_{1}=\left\{\left(u_{0}, u_{1}\right),\left(u_{0}, u_{2}\right),\left(u_{3}, u_{4}\right)\right\}$, $\mathrm{R}_{2}=\left\{\left\{\left(u_{1}, u_{2}\right),\left(u_{4}, u_{5}\right)\right\}, \mathrm{R}_{3}=\left\{\left(u_{2}, u_{3}\right),\left(u_{0}, u_{5}\right)\right\}\right.$ are the relations on V . Let $\mathrm{A}=\left\{\left\langle u_{0}, 0.8,0.2\right\rangle,\left\langle u_{1}, 0.9,0.1\right\rangle,\left\langle u_{2}, 0.6,0.3\right\rangle\right.$, $\left.\left.\left\langle u_{3}, 0.5,0.4\right\rangle,\left\langle u_{4}, 0.6,0.1\right\rangle,\left\langle u_{5}, 0.7,0.2\right\rangle\right\}\right\}$ be an IFS on V and $\mathrm{B}_{1}=\left\{\left(u_{0}, u_{1}\right), 0.8,0.1\right\rangle,\left\langle\left(u_{0}, u_{2}\right), 0.5,0.4\right\rangle,\left\langle\left(u_{3}, u_{4}\right)\right.$, $0.4,0.5\rangle\}, \mathrm{B}_{2}=\left\{\left\langle\left(u_{1}, u_{2}\right), 0.6,0.3\right\rangle,\left\langle\left(u_{4}, u_{5}\right), 0.6,0.2\right\rangle\right\}, \mathrm{B}_{3}=\left\{\left\langle\left(u_{2}, u_{3}\right), 0.3,0.5\right\rangle,\left\langle\left(u_{0}, u_{5}\right), 0.3,0.4\right\rangle\right\}$ are IFRs on V .

$$
\begin{gathered}
d_{B_{1}}\left(u_{0}\right)=\left(d_{\mu_{H_{1}}}(u), d_{v_{B_{1}}}(u)\right)=(1.3,0.5), d_{B_{2}}\left(u_{0}\right)=(0,0), d_{B_{3}}\left(u_{0}\right)=(0.3,0.4) ; \\
d_{B_{1}}\left(u_{1}\right)=(0.8,0.1), d_{B_{2}}\left(u_{1}\right)=(0.6,0.3), d_{B_{3}}\left(u_{1}\right)=(0,0) ; \\
d_{B_{1}}\left(u_{2}\right)=(0.5,0.4), d_{B_{2}}\left(u_{2}\right)=(0.6,0.3), d_{B_{3}}\left(u_{2}\right)=(0.3,0.5) ; \\
d_{B_{1}}\left(u_{3}\right)=(0.4,0.5), d_{B_{2}}\left(u_{3}\right)=(0,0), d_{B_{3}}\left(u_{3}\right)=(0.3,0.5) ; \\
d_{B_{1}}\left(u_{4}\right)=(0.4,0.5), d_{B_{2}}\left(u_{4}\right)=(0.6,0.2), d_{B_{3}}\left(u_{4}\right)=(0,0) ; \\
d_{B_{1}}\left(u_{5}\right)=(0,0), d_{B_{2}}\left(u_{5}\right)=(0.6,0.2), d_{B_{3}}\left(u_{5}\right)=(0.3,0.4) .
\end{gathered}
$$

$$
\text { Also } d\left(u_{0}\right)=d_{B_{1}}\left(u_{0}\right)+d_{B_{2}}\left(u_{0}\right)+d_{B_{3}}\left(u_{0}\right)=(1.6,0.9), d\left(u_{1}\right)=(1.4,0.4) \text {, }
$$

$$
d\left(u_{2}\right)=(1.4,1.2), d\left(u_{3}\right)=(0.7,1.0), d\left(u_{4}\right)=(1.0,0.7), d\left(u_{5}\right)=(0.9,0.6) .
$$

6) Definition (3.6): Let \boldsymbol{G} be an intuitionistic fuzzy graph structure (IFGS) of G. If $d_{\mu_{B_{i}}}(u)=p \quad \forall u \in V$ then \boldsymbol{G} is said to be $p-\mu_{B_{1}}-$ regular and if $d_{v_{\mathcal{A}_{A}}}(u)=q \quad \forall u \in V \quad$ then \tilde{G} is said to be $q-v_{B_{-}}$-regular.
In the above example (3.5), \tilde{G} is $0.3-\mu_{B_{3}}$-regular and \tilde{G} is $0.6-\mu_{B_{2}}$-regular, but no $v_{B_{1}}$-regular.
7) Definition (3.7): Let \tilde{G} be an intuitionistic fuzzy graph structure (IFGS) of G . If $d_{B_{i}}(u)=(p, q) \quad \forall u \in V$ then \tilde{G} is said to be (p, q) - B_{i}-regular and if $d(u)=(p, q) \quad \forall u \in V \quad$ then \tilde{G} is said to be (p, q)-regular IFGS.
In the above example (3.5), \boldsymbol{G} is also not B_{i}-regular.
8) Theorem (3.8): Let G be an IFGS of G and $\overline{G^{*}}=\left(\mathrm{V}, \mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{k}}\right)$ be an odd B_{i}-cycle. G^{G} is B_{i}-regular iff $\mu_{B_{i}}(u, v)$ and $v_{B_{i}}(u, v)$ are constant for all B_{i}-edges in R_{i}.
Proof: Let $\mu_{B_{i}}(u, v)$ and $v_{B_{i}}(u, v)$ be constant function say $\mu_{B_{i}}(u, v)=\mathrm{c}_{\mathrm{i}}$ and $v_{B_{i}}(u, v)=d_{\mathrm{i}} \forall(\mathrm{u}, \mathrm{v}) \in \mathrm{R}_{\mathrm{i}}$. i.e. $d_{\mu_{B_{i}}}(u)=2 \mathrm{c}_{\mathrm{i}}$ and $d_{V_{B}}(u) .=2 \mathrm{~d}_{\mathrm{i}} \quad \forall u \in \mathrm{~V}$
$\therefore \quad \mathbb{G}$ is $\left(2 \mathrm{c}_{\mathrm{i}}, 2 \mathrm{~d}_{\mathrm{i}}\right) \mathrm{B}_{\mathrm{i}}$-regular.
Conversely, Let \tilde{G} be (r,s) B_{i}-regular and let B_{i}-edges of R_{i} be $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{2 \mathrm{n}+1}$ and let
$\mu_{R_{i}}\left(\mathrm{e}_{1}\right)=\mathrm{r}_{1}$ and let $\mu_{R_{i}}\left(\mathrm{e}_{1}\right)=\mathrm{r}_{1}$ then $\mu_{B_{i}}\left(\mathrm{e}_{2}\right)=\mathrm{r}-\mathrm{r}_{1}$,
$\mu_{R_{1}}\left(e_{3}\right)=r-\left(r-r_{1}\right)=r_{1}, \mu_{R_{1}}\left(e_{4}\right)=r-r_{1}, \quad \mu_{B_{1}}\left(e_{5}\right)=r-\left(r-r_{1}\right)=r_{1}$,
$\mu_{B_{i}}\left(\mathrm{e}_{\mathrm{m}}\right)=\mathrm{r}_{1}$ if m is odd,
$=r-r_{1}$ if m is even
Similarly, let $V_{B_{1}}\left(\mathrm{e}_{1}\right)=\mathrm{s}_{1}$ then $V_{R_{1}}\left(\mathrm{e}_{2}\right)=\mathrm{s}-\mathrm{s}_{1}$,
$v_{B_{1}}\left(\mathrm{e}_{3}\right)=\mathrm{s}-\left(\mathrm{s}-\mathrm{s}_{1}\right)=\mathrm{s}_{1}, \quad V_{B_{1}}\left(\mathrm{e}_{4}\right)=\mathrm{s}-\mathrm{s}_{1}, v_{B_{1}}\left(\mathrm{e}_{5}\right)=\mathrm{s}-\left(\mathrm{s}-\mathrm{s}_{1}\right)=\mathrm{s}_{1}$,
$V_{B_{1}}\left(\mathrm{e}_{\mathrm{m}}\right)=\mathrm{s}_{1} \quad$ if m is odd,
$=s-s_{1}$ if m is even,
If e_{1} and $\mathrm{e}_{2 \mathrm{n}+1}$ are incident with $\mathrm{u}, d_{\mu_{\beta^{R}}}(u)=\mathrm{r}_{1}+\mathrm{r}_{1}=2 \mathrm{r}_{1}$ and $d_{v_{\mathfrak{R}}}(u)=\mathrm{s}_{1}+\mathrm{s}_{1}=2 \mathrm{~s}_{1}$
$d_{\mu_{B_{1}}}(u)=\mathrm{r}$ and $d_{v_{H_{F}}}(u)=\mathrm{s} . \quad \Rightarrow 2 \mathrm{r}_{1}=\mathrm{r}$ and $\quad 2 \mathrm{~s}_{1}=\mathrm{s}$
$\Rightarrow \mathrm{r}_{1}=\mathrm{r} / 2$ and $\mathrm{s}_{1}=\mathrm{s} / 2$
$\therefore d_{\mu_{B_{i}}}\left(\mathrm{e}_{\mathrm{m}}\right)=\frac{r}{2}$ and $d_{v_{B_{i}}}\left(\mathrm{e}_{\mathrm{m}}\right)=\frac{s}{2}$
$\Rightarrow \mu_{B_{i}}(u, v)$ and $v_{B_{i}}(u, v)$ are constant in R_{i}.
9) Remark (3.9): Note that theorem (3.8) also holds if $\widetilde{G *}$ is replaced by $\left(\operatorname{supp}(A), \operatorname{supp}\left(B_{1}\right), \operatorname{supp}\left(B_{2}\right), \ldots, \operatorname{supp}\left(B_{k}\right)\right)$.
10) Theorem (3.10): Let \tilde{G} be an IFGS of G and $\widetilde{G^{*}}=\left(\mathrm{V}, \mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{k}}\right)$ be an even B_{i}-cycle. \tilde{G} is B_{i}-regular iff $\mu_{B_{i}}(u, v)$ and $v_{B_{i}}(u, v)$ are constant for all B_{i}-edges in R_{i} or alternate B_{i}-edges in R_{i} have the same membership and nonmembership value.
Proof: Let $\mu_{B_{i}}(u, v)$ and $v_{B_{i}}(u, v)$ be constant in R_{i}.
$\therefore d_{\mu_{B_{H}}}(u)$ and $d_{v_{F_{F}}}(u)$ are constant $\forall u \in \mathrm{~V}$.
If alternate B_{i}-edges in R_{i} have the same membership and non- membership value,
$\Rightarrow d_{\mu_{B_{i}}}(u)$ and $d_{\nu_{B_{B}}}(u)$ are constant $\forall u \in \mathrm{~V}$.
So \tilde{G} is B_{i}-regular.
Conversely, Let \tilde{G} be a (r,s) B_{i}-regular and let B_{i}-edges of R_{i} be $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{2 \mathrm{n}+1}$
$\therefore \mu_{B_{1}}\left(\mathrm{e}_{\mathrm{j}}\right)=\mathrm{r}_{1} \quad$ if j is odd,

$$
=r-r_{1} \text { if } \mathrm{j} \text { is even }
$$

and $v_{B_{1}}\left(\mathrm{e}_{\mathrm{j}}\right)=\mathrm{s}_{1} \quad$ if j is odd,
$=s-s_{1}$ if j is even,
If $\mathrm{r}_{1}=\mathrm{r}-\mathrm{r}_{1}$ and $\mathrm{s}_{1}=\mathrm{s}-\mathrm{s}_{1} \quad \Rightarrow 2 \mathrm{r}_{1}=\mathrm{r}$ and $2 \mathrm{~s}_{1}=\mathrm{s}$
$\therefore d_{\mu_{B_{i}}}\left(\mathrm{e}_{j}\right)=r=2 r_{1}=$ constant and $d_{v_{B_{i}}}\left(\mathrm{e}_{j}\right)=s=2 s_{1}=$ constant.
$\Rightarrow \mu_{B_{i}}(u, v)$ and $v_{B_{i}}(u, v)$ are constant in R_{i}. If not, alternate B_{i}-edges in R_{i} have the same membership and non- membership value.
11) Remark (3.11): Note that theorem (3.10) is true if $\widetilde{G w}$ is replaced by ($\operatorname{supp}(A)$, supp $\left.\left(B_{1}\right), \operatorname{supp}\left(B_{2}\right), \ldots \ldots, \operatorname{supp}\left(B_{k}\right)\right)$.
12) Definition (3.12): The $\mu_{B_{i}}$-size of an IFGS \tilde{G} is $S_{\mu_{B_{i}}}(\tilde{G})=\sum_{(u, v) \in B_{i}} \mu_{B_{i}}(u, v)$ and $\mu_{B_{i}}$-size of \tilde{G} is $S_{v_{B_{i}}}(\tilde{G})=\sum_{(u, v) \in B_{i}} v_{B_{i}}(u, v)$.
13) Definition (3.13): The B_{i}-size of \boldsymbol{G} is $S_{B_{i}}(\tilde{G})=\left(S_{\mu_{B_{i}}}(\tilde{G}), S_{v_{B_{i}}}(\tilde{G})\right)=\left(\sum_{(u, v) \in B_{i}} \mu_{B_{i}}(u, v), \sum_{(u, v) \in B_{i}} v_{B_{i}}(u, v)\right)$ and the size of \tilde{G} is $S(\tilde{G})=\sum_{i=1}^{k} S_{B_{i}}(\tilde{G})=\left(\sum_{i=1}^{k} S_{\mu_{B_{i}}}(\tilde{G}), \sum_{i=1}^{k} S_{v_{B_{i}}}(\tilde{G})\right)$.
14) Definition (3.14): The μ_{A}-order of \tilde{G} is $O_{\mu_{A}}(\tilde{G})=\sum_{u \in A} \mu_{A}(u)$ and v_{A} - order of \tilde{G} is $O_{v_{A}}(\tilde{G})=\sum_{u \in A} v_{A}(u)$.
15) Definition (3.15): The B_{i} - order of \tilde{G} is $O(\tilde{G})=\left(O_{\mu_{A}}(\tilde{G}), O_{v_{A}}(\tilde{G})\right)=\left(\sum_{u \in A} \mu_{A}(u), \sum_{u \in A} v_{A}(u)\right)$.
16) Theorem (3.16): The B_{i}-size of $(\mathrm{r}, \mathrm{s}) \mathrm{B}_{\mathrm{i}}$-regular IFGS \tilde{G} of G on $\widetilde{\boldsymbol{G} *}=\left(\mathrm{V}, \mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{k}}\right)$ is $(\mathrm{nr} / 2, \mathrm{~ns} / 2)$ where n is the no. of vertices in V. i.e. $S_{B_{i}}(\tilde{G})=\left(\frac{n r}{2}, \frac{n s}{2}\right)$.
Proof: The B_{i}-size of \mathcal{G} is $S_{B_{i}}(\tilde{G})=\left(\sum_{(u, v) \in B_{i}} \mu_{B_{i}}(u, v), \sum_{(u, v) \in B_{i}} v_{B_{i}}(u, v)\right)$.
$\Rightarrow S_{B_{i}}(\tilde{G})=\left(S_{\mu_{B_{i}}}(\tilde{G}), S_{v_{B_{i}}}(\tilde{G})\right)$.
Let $d_{\mu_{B_{B}}}(u)=\mathrm{r}$ and $d_{v_{g_{H}}}(u)=\mathrm{s} \forall \mathrm{u} \in \mathrm{V}$
But $\sum_{u \in V} d_{\mu_{B_{i}}}(u)=2 \sum_{(u, v) \in B_{i}} \mu_{B_{i}}(u, v)=2 S_{\mu_{B_{i}}}(\tilde{G})$ and $\sum_{u \in V} d_{v_{B_{i}}}(u)=2 \sum_{(u, v) \in B_{i}} v_{B_{i}}(u, v)=2 S_{v_{B_{i}}}(\tilde{G})$.
Let no. of vertices in V be n .
$2 S_{\mu_{b_{i}}}(\tilde{G})=\sum_{u \in V} d_{\mu_{B_{i}}}(u)=\sum_{u \in V} r=\operatorname{nr}$ and $2 S_{V_{b_{i}}}(\tilde{G})=\sum_{u \in V} d_{v_{b_{i}}}(u)=\sum_{u \in V} s=\mathrm{ns}$.
$\Rightarrow S_{\mu_{b_{i}}}(\tilde{G})=\frac{n r}{2}$ and $S_{v_{b_{i}}}(\tilde{G})=\frac{n s}{2}$.
$\Rightarrow S_{B_{i}}(\tilde{G})=\left(\frac{n r}{2}, \frac{n s}{2}\right)$.
17) Remark (3.17): If $\widetilde{G *}$ is replaced by $\left(\operatorname{supp}(A), \operatorname{supp}\left(B_{1}\right), \operatorname{supp}\left(B_{2}\right), \ldots, \operatorname{supp}\left(B_{k}\right)\right)$, then theorem (3.16) also holds.
18) Theorem (3.18): Let \mathcal{G} be a B_{i}-regular IFGS of G where $\widetilde{G *}$ is a R_{i}-cycle then G is B_{i} - cycle and it cannot be an intuitionistic fuzzy $B_{i}-$ tree.
Proof: Let \mathbb{G} be a B_{i}-regular on R_{i}-cycle $\widetilde{G} *$.
Then $\mu_{B_{i}}(u, v)$ and $v_{B_{i}}(u, v)$ are either constant for all B_{i}-edges in R_{i} or alternate B_{i}-edges in R_{i} have the same membership and non-membership value.
\therefore there does not exist unique B_{i}-edge (u, v) in $\mathrm{R}_{\mathrm{i}} \mathrm{s}, \mathrm{t}, \mu_{B_{i}}(u, v)=\wedge \mu_{B_{i}}(x, y)$ and $v_{B_{i}}(u, v)=v_{B_{i}}(x, y)$
$\Rightarrow G$ is an intuitionistic fuzzy B_{i}-cycle.
$\Rightarrow \tilde{G}$ cannot be an intuitionistic fuzzy B_{i}-tree.
19) Remark (3.19): Note that theorem (3.18) is true if $\widetilde{\mathcal{G}^{*} \text { is }}$ is replaced by $\left(\operatorname{supp}(A), \operatorname{supp}\left(B_{1}\right), \operatorname{supp}\left(B_{2}\right), \ldots, \operatorname{supp}\left(B_{k}\right)\right)$.
20) Theorem (3.20): Let \tilde{G} be a B_{i}-regular IFGS of G on an odd B_{i}-cycle then \tilde{G} does not have an intuitionistic fuzzy B_{i}-bridge. Hence \tilde{G} does not have an intuitionistic fuzzy B_{i}-cut vertex.
Proof: Let \mathcal{G} be a B_{i}-regular on an odd B_{i}-cycle $\widetilde{\mathbb{F}_{\pi}^{*}}$
Then $\mu_{B_{i}}(u, v)$ and $v_{B_{i}}(u, v)$ are constant for all B_{i}-edges in R_{i} by theorem (3.8).
\Rightarrow If we remove an intuitionistic fuzzy B_{i}-bridge, it will not reduce the strength of connectedness between any pair of vertices.
$\Rightarrow \tilde{G}^{\widetilde{ }}$ will not have an intuitionistic fuzzy B_{i}-bridge.
Also a vertex is an intuitionistic fuzzy B_{i}-cut vertex iff it is a common vertex of two B_{i}-bridges.
$\therefore G$ does not have an intuitionistic fuzzy $\mathrm{B}_{\mathrm{i}}-$ cut vertex.
21) Theorem (3.21): Let G be a B_{i}-regular IFGS of G on an even B_{i}-cycle then \tilde{G} either does not have an intuitionistic fuzzy $\mathrm{B}_{\mathrm{i}}-$ bridge or it has $r_{i} / 2$ intuitionistic fuzzy B_{i}-bridges where $r_{i}=\left|B_{i}\right|$ i.e. $r_{i}=$ no. of edges. Also \mathscr{G} does not have a $B_{i}-$ cut vertex.
Proof: Let \vec{G} be a B_{i}-regular on an even B_{i}-cycle \widetilde{G}.
Then by theorem (3.10), $\mu_{B_{i}}(u, v)$ and $v_{B_{i}}(u, v)$ are either constant for all B_{i}-edges in R_{i} or alternate B_{i}-edges in R_{i} have the same membership and non- membership value.
a) Case I: Let $\mu_{B_{i}}(u, v)$ and $v_{B_{i}}(u, v)$ be a constant in R_{i}.
\Rightarrow If we remove an intuitionistic fuzzy B_{i}-edge, it will not reduce the strength of connectedness between any pair of vertices.
$\Rightarrow G$ will not have an intuitionistic fuzzy B_{i}-bridge.
$\Rightarrow \tilde{G}$ will not have a B_{i}-cut vertex.
b) Case II: Alternate B_{i}-edges in R_{i} have the same membership and non- membership value.
\widetilde{G} is a B_{i}-cycle.
$\therefore \mathrm{B}_{\mathrm{i}}$-edges with greater membership and lesser non- membership value are the B_{i}-bridges of \boldsymbol{G}.
\Rightarrow there are $r_{i} / 2$ such B_{i}-edges where $r_{i}=$ no. of edges.
Two B_{i}-bridges will not have a common vertex.
Hence \tilde{G} does not have a B_{i}-cut vertex.
22) Remark (3.22): If $\widetilde{G *}$ is replaced by $\left(\operatorname{supp}(A), \operatorname{supp}\left(B_{1}\right), \operatorname{supp}\left(B_{2}\right), \ldots, \operatorname{supp}\left(B_{k}\right)\right)$, then theorem (3.21) is true.
23) Theorem (3.23): A B_{i}-connected (r, s) B_{i}-regular IFGS \tilde{G} of G where $r>0, s>0$ with no. of vertices greater than or equal to 3 , cannot have an end vertex of $B_{i}-$ paths.
Proof: Let $d_{\mu_{B_{i}}}(u)>0$ and $d_{v_{B_{i}}}(u)>0 \forall u \in \mathrm{~V}$.
\Rightarrow each vertex is adjacent to atleast one vertex by a B_{i}-edge.
If possible, let v be an end vertex of a B_{i}-path.
Let (u, v) be in $\mathrm{R}_{\mathrm{i}}, d_{\mu_{B_{i}}}(u)=\mathrm{r}=\mu_{B_{i}}(u, v)$ and $d_{v_{B_{i}}}(u)=\mathrm{s}=v_{B_{i}}(u, v)$
$\Rightarrow G$ is B_{i}-connected and no. of vertices are greater than or equal to 3 .
$\Rightarrow u$ is adjacent to some vertex $z \neq v$ by a $\mathrm{B}_{\mathrm{i}}-$ edge.
$\Rightarrow d_{\mu_{B_{i}}}(u) \geq \mu_{B_{i}}(u, v)+\mu_{B_{i}}(v, z)>\mu_{B_{i}}(u, v)=r$ and $d_{v_{B_{i}}}(u) \geq v_{B_{i}}(u, v)+v_{B_{i}}(v, z)>v_{B_{i}}(u, v)=s$.
$\Rightarrow d_{\mu_{B_{i}}}(u)>r$ and $d_{v_{B_{i}}}(u)>S$ which is a contradiction.
Hence \mathscr{G} cannot have an end vertex of $\mathrm{B}_{\mathrm{i}}-$ paths.
24) Definition (3.24): The minimum $\mu_{B_{i}}$-degree of G is the minimum of $d_{\mu_{B_{i}}}(u)$. Thus, $\delta_{\mu_{B_{i}}}(u)=\wedge\left\{d_{\mu_{B_{i}}}(u): u \in A\right\}$ and the minimum $v_{B_{i}}$ - degree of \tilde{G} is the minimum of $d_{V_{B_{T}}}(u)$.
i.e. $\delta_{v_{B_{i}}}(u)=\wedge\left\{d_{v_{B_{i}}}(u): u \in A\right\}$.
25)

Definition (3.25): The minimum B_{i}-degree of \boldsymbol{G} is $\delta_{B_{i}}(\tilde{G})=\left(\delta_{\mu_{B_{i}}}(\tilde{G}), \delta_{v_{B_{i}}}(\tilde{G})\right)$ or $\delta_{B_{i}}(\tilde{G})=\wedge\left\{\left(d_{\mu_{B_{i}}}(u), d_{v_{B_{i}}}(u)\right): u \in A\right\} \quad$ and the minimum degree of \tilde{G} is $\delta(\tilde{G})=\wedge\left\{\delta_{B_{i}}(\tilde{G}): i=1,2, \ldots, k\right\}$. i.e.. $\quad \delta(\tilde{G})=\left(\wedge \delta_{\mu_{B_{i}}}(\tilde{G}), \wedge \delta_{v_{B_{i}}}(\tilde{G})\right)$ where $i=1,2, \ldots, k$
26) Definition (3.26): The maximum $\mu_{B_{i}}$-degree of IFGS \tilde{G} is the maximum of $d_{\mu_{B_{i}}}(u)$. Thus, $\Delta_{\mu_{B_{i}}}(u)=\vee\left\{d_{\mu_{B_{i}}}(u): u \in A\right\}$ and the maximum $v_{B_{i}}$ - degree of \widetilde{G} is the maximum of $d_{v_{B}}(u)$.
i.e., $\Delta_{v_{B_{i}}}(u)=\vee\left\{d_{v_{B_{i}}}(u): u \in A\right\}$.
27) Definition (3.27): The maximum B_{i}-degree of \boldsymbol{G} is $\Delta_{B_{i}}(\tilde{G})=\left(\Delta_{\mu_{B_{i}}}(\tilde{G}), \Delta_{v_{B_{i}}}(\tilde{G})\right) \quad$ or $\Delta_{B_{i}}(\tilde{G})=\vee\left\{\left(d_{\mu_{B_{i}}}(u), d_{v_{B_{i}}}(u)\right): u \in A\right\}$ and the maximum degree of \tilde{G} is $\Delta(\tilde{G})=\vee\left\{\Delta_{B_{i}}(\tilde{G}): i=1,2, \ldots, k\right\}$. i.e.. $\quad \Delta(\tilde{G})=\left(\vee \Delta_{\mu_{B_{i}}}(\tilde{G}), \vee \Delta_{v_{B_{i}}}(\tilde{G})\right)$ where $i=1,2, \ldots, k$.
28) Definition (3.28): The minimum degree of IFGS \mathcal{G} is the minimum of $\delta_{B_{i}}(\tilde{G}) \therefore \delta(\tilde{G})=\wedge\left\{\delta_{B_{i}}(\tilde{G}): i=1,2,3, \ldots, k\right\}$ and the maximum degree of IFGS \tilde{G} is the maximum of $\Delta_{B_{i}}(\tilde{G}) \therefore \Delta(\tilde{G})=\vee\left\{\Delta_{B_{i}}(\tilde{G}): i=1,2,3, \ldots, k\right\}$.
29) Proposition (3.29): In an IFGS, if we take sum i.e. addition of membership degree and non membership degree of all the nodes (or vertices) of IFGS, it is always equal to double the sum of membership value and non membership value of all the edges of IFGS.

```
i.e. \(\sum d_{B_{i}}(u)=\left(\sum d_{\mu_{B_{i}}}(u), \sum d_{v_{B_{i}}}(u)\right)\)
Or
\[
=\left(2 \sum_{u \neq v} \mu_{B_{i}}(u, v), 2 \sum_{u \neq v_{i}} v_{B_{i}}(u, v)\right)
\]
```

Proof: Let G be an IFGS and let $\mathrm{V}=\left\{u_{1}, u_{2}, u_{3}, \ldots \ldots, u_{n}\right\}$

$$
\begin{aligned}
& \sum d_{B_{i}}\left(u_{j}\right)=\left(\sum d_{\mu_{B_{i}}}\left(u_{j}\right), \sum d_{v_{B_{i}}}\left(u_{j}\right)\right) \quad \forall u_{j} \in V \quad \text { for } j=1,2, \ldots, n \text {. } \\
& \sum d_{B_{i}}\left(u_{j}\right)=\left(d_{\mu_{B_{i}}}\left(u_{1}\right), d_{v_{B_{i}}}\left(u_{1}\right)\right)+\left(d_{\mu_{B i}}\left(u_{2}\right), d_{v_{B_{i}}}\left(u_{2}\right)\right)+\ldots \ldots\left(d_{\mu_{B i}}\left(u_{n}\right), d_{v_{B i}}\left(u_{n}\right)\right) \\
& =\left(\mu_{B_{i}}\left(u_{1}, u_{2}\right), v_{B_{i}}\left(u_{1}, u_{2}\right)\right)+\left(\mu_{B_{i}}\left(u_{1}, u_{3}\right), v_{B_{i}}\left(u_{1}, u_{3}\right)\right)+\ldots \ldots \ldots+\left(\mu_{B_{i}}\left(u_{1}, u_{n}\right), v_{B_{i}}\left(u_{1}, u_{n}\right)\right)+ \\
& \left(\mu_{B_{i}}\left(u_{2}, u_{1}\right), v_{B_{i}}\left(u_{2}, u_{1}\right)\right)+\left(\mu_{B_{i}}\left(u_{2}, u_{3}\right), v_{B_{i}}\left(u_{2}, u_{3}\right)\right)+\ldots \ldots \ldots+\left(\mu_{B_{i}}\left(u_{2}, u_{n}\right), v_{B_{i}}\left(u_{2}, u_{n}\right)\right)+ \\
& +\left(\mu_{B_{i}}\left(u_{n}, u_{1}\right), v_{B_{i}}\left(u_{n}, u_{1}\right)\right)+\left(\mu_{B_{i}}\left(u_{n}, u_{2}\right), v_{B_{i}}\left(u_{n}, u_{2}\right)\right)+\ldots \ldots \ldots+\left(\mu_{B_{i}}\left(u_{n}, u_{n-1}\right), v_{B_{i}}\left(u_{n}, u_{n-1}\right)\right) \\
& =2\left(\left(\mu_{B_{i}}\left(u_{1}, u_{2}\right), v_{B_{i}}\left(u_{1}, u_{2}\right)\right)+\left(\mu_{B_{i}}\left(u_{1}, u_{3}\right), v_{B_{i}}\left(u_{1}, u_{3}\right)\right)+\ldots \ldots \ldots+\left(\mu_{B_{i}}\left(u_{1}, u_{n}\right), v_{B_{i}}\left(u_{1}, u_{n}\right)\right)\right) \\
& =\left(2 \sum_{u \neq v} \mu_{B_{i}}(u, v), 2 \sum_{u \neq v_{i}} v_{B_{i}}(u, v)\right)
\end{aligned}
$$

Hence the result is proved.

Example (3.30): Consider IFGS \mathcal{F} and V as shown in Example (3.5), clearly
Here $\sum_{j=0}^{5} d\left(u_{j}\right)=(7,4.8)$ and $\left(2 \sum_{u \neq v} \mu_{B_{i}}\left(u_{j}, u_{s}\right), 2 \sum_{u \neq v_{i}} v_{B_{i}}\left(u_{j}, u_{s}\right)\right)=(2 \times 3.5,2 \times 2.4)=(7,4.8)$.
31) Proposition (3.31): In an IFGS having n vertices, the maximum membership degree and maximum non membership degree of any vertex is $\mathrm{n}-1$.
Proof: Let \tilde{G} be an IFGS and no. of vertices $=\mathrm{n}$.
The maximum membership degree of any edge is 1 and the no. of edges incident on a vertex can be atmost $\mathrm{n}-1$.
Thus, the maximum degree of membership of any vertex in an IFGS having n vertices is $n-1$.
Similarly, the maximum degree of non membership of any edge is 1and the no. of edges incident on a vertex can be atmost $\mathrm{n}-1$.
Thus, the maximum degree of non membership of any vertex in an IFGS having n vertices is $n-1$.
32) Proposition (3.32): In an IFGS, the number of vertices with odd degree of membership and that of odd degree of non membership is even.
Proof: Let \vec{G} be an IFGS and V be the set of all vertices.
Let the vertices have both odd and even degree of membership.
$\sum d_{\mu_{B_{i}}}(u)=\sum_{\text {odd }} d_{\mu_{B_{i}}}(u)+\sum_{\text {even }} d_{\mu_{B_{i}}}(u), \quad \forall u \in V$
where $\sum d_{\mu_{\mathrm{B}_{\mathrm{i}}}}(u)=$ Sum of the degree of membership of all the vertices in \tilde{G}
$=$ sum of 2 sums each of taken over vertices with degree of membership as even and odd respectively.
Also by above Proposition (3.29),
$\sum d_{\mu_{B_{i}}}(u)=2 \sum_{u \neq v} \mu_{B_{i}}(u, v)$
$\Rightarrow \sum d_{\mu_{B_{i}}}(u)$ is even by above equation (2)
$\sum_{\text {even }} d_{\mu_{B_{i}}}(u)$ is even since it is the sum of even numbers,
$\sum_{o d d} d_{\mu_{B i}}(u)$ is also even $\quad(\mathrm{by}$ equation (1))
$\therefore \sum_{o d d} d_{\mu_{B_{i}}}(u)=$ even no.
$\because e \operatorname{ach} \sum d_{\mu_{B_{i}}}(u)$ is odd
\Rightarrow the total no. of terms in the sum = even

$$
(\because \quad \text { theirsum is an even no. })
$$

\therefore The number of vertices with odd degree of membership is even.
Similarly the number of vertices with odd degree of non membership is also even.
33) Example (3.33): Consider IFGS \tilde{G} as given in example (3.5),

$$
\begin{gathered}
d\left(u_{0}\right)=(1.6,0.9), d\left(u_{1}\right)=(1.4,0.4), d\left(u_{2}\right)=(1.4,1.2) \\
d\left(u_{3}\right)=(0.7,1.0), d\left(u_{4}\right)=(1.0,0.7), d\left(u_{5}\right)=(0.9,0.6)
\end{gathered}
$$

In this example, vertices with odd degree of membership are u_{3} and u_{5} and their no. $=2$ (even).
Similarly the number of vertices with odd degree of non membership (i.e. u_{0} and u_{4}) $=2$ (even).
Degree of membership of $u_{3}=0.7$, Degree of membership of $u_{5}=0.9$,
Degree of membership of $u_{0}=0.9$, Degree of membership of $u_{4}=0.7$
These are all odd.
34) Proposition (3.34): Let \mathcal{F} be a complete IFGS, then it will have at least one pair of vertices with same degree of membership and at least one pair of vertices with same degree of non membership.
Proof: Let \tilde{G} be a complete IFGS and $\mathrm{V}=\left\{u_{1}, u_{2}, u_{3}, \ldots ., u_{n}\right\}$ be the set of all vertices.

Case I: Let $\mu_{A}\left(u_{j}\right)$ and $v_{A}\left(u_{j}\right)$ are equal $\forall u_{j} \in \mathrm{~V}$,
Then clearly $\mu_{B_{i}}\left(u_{j}, u_{k}\right)$ and $v_{B_{i}}\left(u_{j}, u_{k}\right)$ are all equal.
\Rightarrow The B_{i}-degree of all vertices are all equal.
\Rightarrow The degree of all vertices are all equal.
Therefore, the result is proved.
Case II: Let $\mu_{A}\left(u_{j}\right)$ and $v_{A}\left(u_{j}\right)$ are different $\forall u_{j} \in \mathrm{~V}$,
$\Rightarrow d_{\mu_{B_{i}}}\left(u_{j}\right)=\sum_{u_{j} \neq u_{k}} \mu_{B_{i}}\left(u_{j}, u_{k}\right)$ and $d_{v_{B_{i}}}\left(u_{j}\right)=\sum_{u_{j} \neq u_{k}} v_{B_{i}}\left(u_{j}, u_{k}\right) \quad\left(\because u_{j}\right.$ are adjacent to $\left.u_{k}\right)$
Hence the required result is proved.

III. ACKNOWLEDGEMENT

The second author would like to thank IKG PT University, Jalandhar for providing the opportunity to do research work under her supervisors.

REFERENCES

[1] E. Sampatkumar, "Generalized Graph Structures", Bulletin of Kerala Mathematics Association, Vol. 3, No.2, (December 2006), 67-123.
[2] T. Dinesh and T. V. Ramakrishnan, "On Generalized fuzzy Graph Structures", Applied Mathematical Sciences, Vol. 5, No. 4, 2011, 173 - 180.
[3] John N. Mordeson, Premchand S. Nair, "Fuzzy Mathematics: An Introduction for Engineers and Scientists", Springer- Verlag Company,1998.
[4] J.N.Mordeson \& P.S.Nair, "Fuzzy Graphs \& Fuzzy Hypergraphs", Physica-verlag,2000
[5] K.T.Atanassov, "Intuitionistic Fuzzy sets, Theory and application", Physica, New York 1999.
[6] P.K.Sharma, Vandana Bansal, "On Intuitionistic fuzzy Graph Structures", IOSR Journal of Mathematics, Vol. 12, Issue 5 Ver. I (Sep. - Oct.2016), 28-33.
[7] P.K.Sharma, Vandana Bansal, "Some elementary operations on Intuitionistic fuzzy Graph Structures", International Journal for Research in Applied Science \& Engineering Technology (IJRASET), Vol. 5, Issue VIII, August.2017, 240-255.
[8] L.A. Zadeh, Fuzzy Sets, Information and Control, 8, 1965, 338-353.
[9] A. Rosenfeld, "Fuzzy Graphs, Fuzzy Sets and their Applications to Cognitive and Decision Process in: L.A. Zadeh, K.S. Fu. M. Shimura (Eds)", Academic Press, New York, 1975, 77-95.
[10] S.Thilagavathi, R. Parvathi, M.G. Karunambigai, "Operations On Intuitionistic Fuzzy Graphs II", Conference Paper in International Journal of Computer Applications, January 2009 DOI: 10.5120/8041-1357.
[11] R. Parvathi, M. G. Karunambigai, "Intuitionistic Fuzzy Graphs", Journal of Computational Intelligence, Theory and Applications, 20, 2006, 139-150.
[12] A .Nagoorgani and S Shajitha Begam, "Degree, order and Size in intuitionistic fuzzy graphs",International Journal of Algorithms Computing and Mathematics, Eashwar Publications, Volume 3, Number 3 August 2010, 11-16.
[13] A .Nagoorgani and K. Radha, "On Regular Fuzzy Graphs", Journal of Physical Sciences, Volume 12,2008, 33-40.
[14] Vandana Bansal, P.K. Sharma, " ϕ-complement of Intuitionistic fuzzy Graph Structures", International Mathematical Forum, Vol. 12, 2017, no. 5, 241 - 250.
[15] P.K. Sharma, Vandana Bansal, "Self Centeredness in Intuitionistic Fuzzy Graph Structure", International Journal of Engineering, Science and Mathematics ,Vol. 6 Issue 5, September 2017, ISSN: 2320-0294, Impact Factor: 6.765, pp.124-134.
[16] P.K. Sharma, Vandana Bansal, "Bridges and cut-vertices of Intuitionistic Fuzzy Graph Structure", International Journal of Engineering, Science and Mathematics, Vol. 6 Issue 8, December 2017, ISSN: 2320-0294, Impact Factor: 6.765, pp.349-358.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

