Formulation of Investment Problem Using Linear Programming Problem

Nethravathi H^{1}, Mangesh S. Pai^{2}, Syed Asim K ${ }^{3}$
${ }^{1,2,3}$ D V S College of Arts and Science, Shimoga

Abstract

Operations research (OR) focus on a wide range of problem-solving techniques and methods applied in the pursuit of improved decision-making and efficiency, such as simulation, mathematical optimization, queuing theory and stochasticprocess models, neural networks, expert systems, decision analysis, and the analytic hierarchy process. Nearly all of these techniques involve the construction of mathematical models that attempt to describe the system. Because of the computational and statistical nature of most of these fields, OR also has strong ties to computer science and analytics. Operational researchers faced with a new problem must determine which of these techniques are most appropriate given the nature of the system, the goals for improvement, and constraints on time and computing power. ${ }^{[1]}$ In this content we are going to discuss about the formulation of investment problem by using Linear Programming Problem.

Keywords: Investment Problem, Decision - Making, Objective Function, Constraints, Non - negative restriction

I. INTRODUCTION

Operations Research is a science which comprises various quantitative tools for decision - making processes. According to Operational researchers the development of linear programming method is one of the most important scientific advances of the second half of the $20^{\text {th }}$ century. Linear Programming has been used to formulate investment problem at maximum profit and with a set of restrictions. In order to attain optimized solutions for investment problems, we first present the formulation of a investment problem at maximum profit using six restrictions aiming at making investigators in the field of investment problem more familiar with the terms and method reported.

A. Describing A Linear Programming Method

The general Linear Programming Problem calls for optimizing a linear function of variables called the Objective Function subject to a set of linear equations and inequalities called the Constraints or Restrictions. ${ }^{[3]}$
The main objective of optimization is to find a set of decision-making variables that generates an optimal solution for the objective function, a maximum or minimum value depending on the problem, and complies with a set of conditions imposed by the model. Such conditions are restrictions that limit the decision-making variables and their relations to assume feasible solution. The Linear Programming models are composed of an objective function which is linear, i.e., it is defined as a linear combination of decisionmaking variables and a set of constants, restricted to a set of linear inequality or equality equations and parameters.

```
Obloctive Functlon:
The objectlve function cvaluater some quantlative criterion of Immsdlate
Importance such as cost, profit, utility, or yleld. The gengral Moser, ob/active
functlon can be written as
\[
=a_{1} x_{1}+E_{1} x_{2}+\ldots+g_{n} x_{n}=\sum_{j=1}^{n} c_{1} x_{j}
\]
Here \({ }^{c}\) ) 15 the cosflident of the th deciston variable The criterion selacted can be elther maxlmized or minnmized.
```


Fig - 1: Structure of general LPP

The chart represented in figure shows definitions and interactions among these components. A solution of a problem is called optimal when the decision-making variables assume value of the objective function and complies with all restrictions of the model. An algebraic representation of a generic formulation of linear programming model could be presented as follows.
To maximize or minimize the objective function:
$P=k_{1} X_{1}+k_{2} X_{2}+\ldots-\cdots-\cdots+-\cdots k_{n}$
It is subject to restrictions
$a_{11} x_{1}+a_{12} x_{2}+\cdots---------+a_{1 n} x_{n} \leq=\geq b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+-----------+a_{2 n n} \leq=\geq b_{2}$
$a_{m 1} X_{1}+a_{m 2} X_{2}+------------+a_{m n} x_{n} \leq=\geq b_{m}$
$\mathrm{x}_{\mathrm{j}} \geq 0(\mathrm{j}=1,2,----------------\mathrm{n})$
Where
(i)Represents the mathematical function encoding the objective of the problem and is called objective function.

In linear Programming, this function must be linear.
(ii)To (iv) represents the linear mathematical function encoding the main restrictions identified.
(v)Non-negativity restrictions, i.e., the decision-making variables may assume any positive value or zero.
" X_{j} " Corresponds to the decision-making variables that represent the quantities one wants to determine to optimize the result.
" k_{i} " represents gain or cost coefficients that each variable is able to generate.
$" b_{j}$ " represents the quantity available in each resource.
$" a_{i j}$ " represents the quantity of resources each decision making variable consumes.

B. The Investment Problem

To illustrate an application of linear programming in investment formulation:
Let us assume that Mr. Kumar, a retired Govt. officer, has recently received his retirement benefits, viz., provident fund, gratuity etc. He is contemplating as to how much funds he should invest in various alternatives open to him so as to maximize return on investment. The investment alternatives are : Government Securities, Fixed Deposits of a public limited company, Equity shares, Term Deposits in banks, National Saving Certificates and Real Estate. He has made a subjective estimate of the risk involved on a five point scale. The data on the return on investment, the number of years for which the funds will be blocked to earn this return on investment and the subjective risk involved are as follows:

Table 1: Investment Details

Investment Alternatives	Return	Number of Years	Risk
Govt. Securities	5%	12	1
Company Deposits	14%	2	2
Equity Shares	21%	4	5
Term Deposits	10%	2	1
NSC	12%	5	1
Real Estate	30%	12	3

He was wondering what percentage of funds he should invest in each alternative so as to maximize the return on investment. He decided that average risk should not be more than 3 and funds should not be locked up for more than 15 years. He would necessarily invest at least 35% in real estate.
Decision making variables:
x_{1} unit of Govt. Securities
x_{2} unit of Company Deposits
x_{3} unit of Equity Shares
x_{4} unit of Term Deposits
x_{5} unit of NSC
X_{6} unit of Real Estat

C. Objective function (p)

The function is to be maximized. The objective function of this problem is defined by the combination of total funds invested in Govt. Securities (x_{1}), Company Deposits($\left(\mathrm{x}_{2}\right)$, Equity $\operatorname{Shares}\left(\mathrm{x}_{3}\right)$, Term Deposits $\left(\mathrm{X}_{4}\right), \operatorname{NSC}\left(\mathrm{x}_{5}\right)$, Real Estate $\left(\mathrm{x}_{6}\right)$ respectively.
Maximize $\mathrm{P}=$ Rs $0.05 \mathrm{x}_{1}+$ Rs $0.14 \mathrm{x}_{2}+$ Rs $0.21 \mathrm{x}_{3}$

+ Rs $0.10 \mathrm{x}_{4}+$ Rs $0.12 \mathrm{x}_{5}+$ Rs $0.30 \mathrm{x}_{6}$
(vi)
This Objective function is a linear.

D. Restrictions

The average risk should not be more than 3 .
The funds should not be locked up for more than 15 years and invest at least 35% in real estate.
Non negative quantities of investment should be
$x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0, x_{5} \geq 0, x_{6} \geq 0$

E. Mathematical model for the Investment Problem

Maximize $P=$ Rs $0.05 \mathrm{x}_{1}+$ Rs $0.14 \mathrm{x}_{2}+$ Rs $0.21 \mathrm{x}_{3}$

+ Rs $0.10 \mathrm{x}_{4}+$ Rs $0.12 \mathrm{x}_{5}+$ Rs $0.30 \mathrm{x}_{6}$
is subject to conditions
$12 x_{1}+2 x_{2}+4 x_{3}+2 x_{4}+5 x_{5}+12 x_{6} \leq 15$
(lock up restriction)
$1 \mathrm{x}_{1}+2 \mathrm{x}_{2}+5 \mathrm{x}_{3}+1 \mathrm{x}_{4}+1 \mathrm{x}_{5}+3 \mathrm{x}_{6} \leq 3$
(average risk restriction)
Non negative restrictions
$x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0, x_{5} \geq 0, x_{6} \geq 0.35$

II. CONCLUSION

Many researchers have developed different algorithms to solve Linear Programming Problem. This formulation can be solved by using analytical method and iterative method. The analytic solution is not possible because the tools of analysis are not well suited to handle inequalities. In such case iterative methods are well suited techniques.
Using computers also, we can solve the LPP which takes less time when compared to all the other methods. Since this method takes less time, it can be applied to solve optimization problem in industries and other fields too.

REFERENCES

[1] https://en.wikipedia.org/wiki/Operations_research
[2] http://www.me.utexas.edu/~jensen/or_site/models/unit/ _model/lp_terms/lp_terms.htm
[3] Operations Research by S D Sharma
[4] Operations Research by S Kalavathy
[5] Operations Research an Introduction by Hamdy A Taha

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

