

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: IV Month of publication: April 2018

DOI: http://doi.org/10.22214/ijraset.2018.4476

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

More Results on k-Super Mean Labeling

Tamilselvi¹, Akilandeswari K², Vivardhani R³

^{1, 2, 3}PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli, - 620 002.

Abstract: Let G be a (p, q) graph and $f: V(G) \rightarrow \{k, k + 1, k + 2, ..., p + q + k - 1\}$ be an injection. For each edge e = uv, let $f^*(e) = \frac{f(u) + f(v)}{2}$ if f(u) + f(v) is even and $f^*(e) = \frac{f(u) + f(v) + 1}{2}$ if f(u) + f(v) is odd, then f is called k - super mean labeling if $f(V) \cup \{f^*(e): e \in E(G)\} = \{k, k + 1, k + 2, ..., p + q + k - 1\}$. A graph that admits a k - Super mean labeling is called k-Super mean graph. In this paper we investigate k - super mean labeling of $n(S(S_3)), (P_n; S_2), [P_n; Q_3], T_n \cup T(L_m), D(F_n)$. Keywords: k-Super mean labeling, k-Super mean graph, $n(S(S_3)), (P_n; S_2), [P_n; Q_3], T_n \cup T(L_m), D(F_n)$. AMS Subject Classification--- 05C78

I. INTRODUCTION

All graphs in this thesis are finite, simple and undirected. Terms not defined here are used in the sense of Harary [7]. The symbols V(G) and E(G) will denote the vertex set and edge set of a graph G. Graph labeling was first introduced in the late 1960's. Many studies in graph labeling refer to **Rosa's** research in 1967. Labeled graphs serve as useful models for a broad range of applications such as X-ray, crystallography, radar, coding theory, astronomy, circuit design and communication network addressing. Particularly interesting applications of graph theory can be found in [1-4]. The concept of mean labeling was introduced and studied by S. Somasundaram and R. Ponraj [12]. The concept of super mean labeling was introduced and

studied by D. Ramya et al [11]. Further some results on super mean graphs are discussed in [8,9,10,13,15]. B. Gayathri and M. Tamilselvi [5-6, 14] extended super mean labeling to k-super mean labeling. In this paper we investigate k-supermean labeling of $n(S(S_3)), (P_n; S_2), [P_n; Q_3], T_n \cup T(L_m), D(F_n)$. Here k denoted as any positive integer greater than or equal to 1.

II. MAIN RESULTS

A. Definition 2.1

Let G be a (p, q) graph and f: V(G) \rightarrow {1,2,3,..., p + q} be an injection. For each edge e = uv, let $f^*(e) = \frac{f(u)+f(v)}{2}$ if f(u) + f(v) is even and $f^*(e) = \frac{f(u)+f(v)+1}{2}$ if f(u) + f(v) is odd, then f is called super mean labeling if f(V) \cup {f*(e): e \in E(G)} = {1,2,3,..., p + q}. A graph that admits a super mean labeling is called super mean graph.

B. Definition 2.2

Let G be a (p, q) graph and f: V(G) \rightarrow {k, k + 1, k + 2, ..., p + q + k - 1} be an injection. For each edge e = uv, let $f^*(e) = \frac{f(u)+f(v)}{2}$ if f(u) + f(v) is even and $f^*(e) = \frac{f(u)+f(v)+1}{2}$ if f(u) + f(v)) is odd, then f is called **k** - **super mean labeling** if f(V) \cup {f*(e): e $\in E(G)$ } = {k, k + 1, k + 2, ..., p + q + k - 1}. A graph that admits a k - Super mean labeling is called **k-Super mean graph.**

C. Definition 2.3

A subdivision of a graph G is a graph resulting from the subdivision of each edge by a new vertex.

D. Definition 2.4

A triangular snake (T_n) is obtained from a path by identifying each edge of the path with an edge of the cycle C_3 .

E. Definition 2.5

A double triangular snake $D(T_n)$ consists of two triangular snake that have a common path. That is, a double triangular snake is obtained from a path v_1 , v_2 , ..., v_n by joining v_i and v_{i+1} to a new vertices w_i for i = 1, 2, ..., n-1 and to a new vertices u_i for i = 1, 2, ..., n-1.

F. Definition 2.6

A star graph S_n is the complete bipartite graph $K_{1,n}$.

G. Definition 2.7

The ladder graph L_n is obtained from the Cartesian product of two path graphs.

H. Definition 2.8

For any graph G, the graph mG denotes the disjoint union of m copies of G.

I. Theorem 2.9

The graph $n(S(S_3))$ is a k-Super mean graph for all $n \ge 1$.

Let $V(n(S(S_3))) = \{u_i, v_i, w_i, s_i, v'_i, w'_i, s'_i; 1 \le i \le n\}$ and $E(n(S(S_3))) = \{e_i = (u_i, v'_i), e'_i = (v_i, v'_i), e''_i = (w_i, w'_i); 1 \le i \le n\} \cup \{e''_i = (u_i, s'_i), e^{iv}_i = (s_i, s'_i), e^{v}_i = (u_i, w'_i); 1 \le i \le n\}$ be the vertices and edges of $n(S(S_3))$ respectively.

Define $f: V(n(S(S_3))) \to \{k, k + 1, k + 2, ..., k + 13n - 1\}$ by $f(u_i) = k + 13i - 9; \ 1 \le i \le n$ $f(s_i) = k + 13i - 13; \ 1 \le i \le n$ $f(s'_i) = k + 13i - 1; \ 1 \le i \le n$ $f(v'_i) = k + 13i - 7; \ 1 \le i \le n$ $f(v_i) = k + 13i - 4; \ 1 \le i \le n$ $f(w_i) = k + 13i - 3; \ 1 \le i \le n$ Now the induced edge labels are $f^*(e_i) = k + 13i - 5; \ 1 \le i \le n$ $f^*(e'_i) = k + 13i - 5; \ 1 \le i \le n$

 $f^*(e_i^{''}) = k + 13i - 10; \ 1 \le i \le n$ $f^*(e_i^{iv}) = k + 13i - 12; \ 1 \le i \le n$ $f^*(e_i^{v}) = k + 13i - 6; \ 1 \le i \le n$ Here p = 7n, q = 6n. Clearly, $f(V) \cup \{f^*(e): e \in E(n(S(S_3)))\} = \{k, k + 1, ..., k + 13n - 1\}.$ So f is a k – Super mean labeling. Hence $n(S(S_3))$ is a k – Super mean graph.

J. Example 2.10

10 – Super mean labeling of $6(S(S_3))$ is given in figure 1:

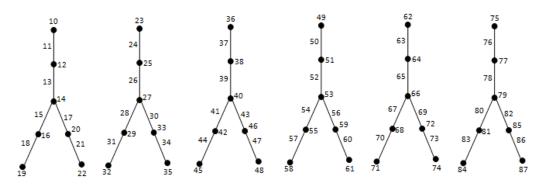


Figure 1: 10 – Super mean labeling of $6(S(S_3))$

Volume 6 Issue IV, April 2018- Available at www.ijraset.com

K. Definition 2.11

Let G be a graph with fixed vertex v and let (P_m;G) be the graph obtained from m copies of G and the path $P_m: u_1, u_2, ..., u_m$ by joining u_i with the vertex v of the ith copy of G by means of an edge, for $1 \le i \le m$.

L. Theorem 2.1

The graph $(P_n; S_2)$ is a k-Super mean graph for all $n \ge 1$.

Proof:

Let $V((P_n; S_2)) = \{u_i, v_i, w_i, w_i'; 1 \le i \le n\}$ and $E((P_n; S_2)) = \{e_i = (u_i, u_{i+1}), 1 \le i \le n-1\} \cup \{e_i' = (u_i, v_i), e_i'' = (w_i, v_i), e_i'' = (v_i, w_i'); 1 \le i \le n\}$ be the vertices and edges of $(P_n; S_2)$ respectively. Define $f: V((P_n; S_2)) \to \{k, k+1, k+2, ..., k+8n-1\}$ by $f(u_i) = \begin{cases} k+8i-8; & 1 \le i \le n; if n is odd \\ k+8i-2; & 1 \le i \le n; if n is even \end{cases}$ $f(v_i) = \begin{cases} k+8i-4; & 1 \le i \le n; if n is odd \\ k+8i-4; & 1 \le i \le n; if n is odd \\ k+8i-4; & 1 \le i \le n; if n is even \end{cases}$ $f(w_i) = \begin{cases} k+8i-4; & 1 \le i \le n; if n is odd \\ k+8i-10; & 1 \le i \le n; if n is even \end{cases}$ Now the induced edge labels are $f^*(e_i) = k+8i-7; & 1 \le i \le n; if n is odd \\ k+8i-3; & 1 \le i \le n; if n is odd \end{cases}$ $f^*(e_i') = \begin{cases} k+8i-7; & 1 \le i \le n; if n is odd \\ k+8i-3; & 1 \le i \le n; if n is odd \end{cases}$ $f^*(e_i') = \begin{cases} k+8i-7; & 1 \le i \le n; if n is odd \\ k+8i-3; & 1 \le i \le n; if n is odd \end{cases}$ $f^*(e_i') = \begin{cases} k+8i-7; & 1 \le i \le n; if n is odd \\ k+8i-3; & 1 \le i \le n; if n is odd \end{cases}$ $f^*(e_i'') = \begin{cases} k+8i-5; & 1 \le i \le n; if n is odd \\ k+8i-5; & 1 \le i \le n; if n is odd \end{cases}$ $f^*(e_i'') = \begin{cases} k+8i-5; & 1 \le i \le n; if n is odd \\ k+8i-5; & 1 \le i \le n; if n is odd \end{cases}$ $f^*(e_i'') = \{k+8i-5; & 1 \le i \le n; if n is odd \\ k+8i-5; & 1 \le i \le n; if n is odd \end{cases}$ $f^*(e_i'') = \{k+8i-3; & 1 \le i \le n; if n is odd \\ k+8i-5; & 1 \le i \le n; if n is odd \end{cases}$ Here p = 4n, q = 4n - 1. Clearly, $f(V) \cup \{f^*(e): e \in E((P_n; S_2))\} = \{k, k+1, ..., k+8n-1\}$. So f is a k – Super mean labeling.

M. Example 2.13

40 – Super mean labeling of $(P_4; S_2)$ is given in figure 2:

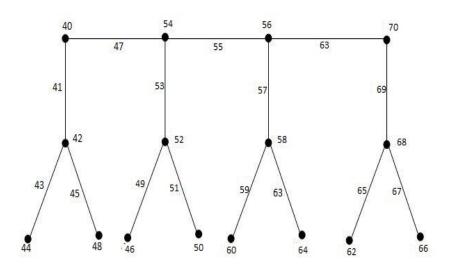


Figure 2: 40 – Super mean labeling of $(P_4; S_2)$

Volume 6 Issue IV, April 2018- Available at www.ijraset.com

N. Definition 2.14

Let G be a graph with fixed vertex v, and let $[P_m;G]$ be the graph obtained from m copies of G by joining v_i and v_{i+1} by means of an edge for some j and $1 \le i \le m - 1$.

O. Theorem 2.15 The graph $[P_n; Q_3]$ is a k-Super mean graph for all $n \ge 1$. Proof: Let $V([P_n; Q_3]) = \{u_i, v_i, w_i, x_i, u'_i, v'_i, w'_i, x'_i; 1 \le i \le n\}$ and $E([P_n; Q_3]) = \{e_i = (u_i, u_{i+1}), 1 \le i \le n-1\} \cup \{e'_i = (u_i, v_i), e''_i =$ $(w_{i}, v_{i}), e_{i}^{\prime\prime\prime} = (w_{i}, x_{i}), : 1 \le i \le n \} \cup \{e_{i}^{iv} = (u_{i}, x_{i}), e_{i}^{v} = (u_{i}, u_{i}^{\prime}), e_{i}^{vi} = (v_{i}, v_{i}^{\prime}): 1 \le i \le n \} \cup \{e_{i}^{vii} = (w_{i}, w_{i}^{\prime}), e_{i}^{viii} = (w_{i}, w_{i}^{\prime}), e_{i}^{vii} = (w_{i}, w_{i}^{\prime}), e$ $(x_i, x'_i), e_i^{ix} = (u'_i, x'_i); 1 \le i \le n \} \cup \{e_i^x = (u'_i, v'_i), e_i^{xi} = (v'_i, w'_i), e_i^{xii} = (w'_i, x'_i); 1 \le i \le n \}$ be the vertices and edges of $[P_n; Q_3]$ respectively. Define $f: V([P_n; Q_3]) \to \{k, k+1, k+2, ..., k+21n\}$ $f(u_i) = \begin{cases} k+21i-21; & 1 \le i \le n; if n is odd \\ k+21i-2; & 1 \le i \le n; if n is oven \end{cases}$ $f(u'_i) = \begin{cases} k+21i-11; & 1 \le i \le n; if n is oven \\ k+21i-13; & 1 \le i \le n; if n is oven \end{cases}$ $f(v'_i) = \begin{cases} k+21i-17; & 1 \le i \le n; if n is oven \\ k+21i-6; & 1 \le i \le n; if n is oven \end{cases}$ $f(w'_i) = \begin{cases} k+21i-13; & 1 \le i \le n; if n is oven \\ k+21i-13; & 1 \le i \le n; if n is oven \end{cases}$ $f(w'_i) = \begin{cases} k+21i-13; & 1 \le i \le n; if n is oven \\ k+21i-11; & 1 \le i \le n; if n is oven \end{cases}$ $f(x'_i) = \begin{cases} k+21i-6; & 1 \le i \le n; if n is oven \\ k+21i-17; & 1 \le i \le n; if n is oven \end{cases}$ $f(v_i) = \begin{cases} k+21i-19; & 1 \le i \le n; if n is oven \\ k+21i-4; & 1 \le i \le n; if n is oven \end{cases}$ $f(w_i) = \begin{cases} k+21i-2; & 1 \le i \le n; if n is oven \\ k+21i-21; & 1 \le i \le n; if n is oven \end{cases}$ $f(w_i) = \begin{cases} k+21i-2; & 1 \le i \le n; if n is oven \\ k+21i-21; & 1 \le i \le n; if n is oven \end{cases}$ $f(x_i) = \begin{cases} k+21i-4; & 1 \le i \le n; if n is oven \\ k+21i-21; & 1 \le i \le n; if n is oven \end{cases}$ $f(x_i) = \begin{cases} k+21i-4; & 1 \le i \le n; if n is oven \\ k+21i-21; & 1 \le i \le n; if n is oven \end{cases}$ Now the induced edge labels are Define $f: V([P_n; Q_3]) \to \{k, k + 1, k + 2, ..., k + 21n - 2\}$ by Now the induced edge labels are $f^{*}(e_{i}) = k + 21i - 1; \ 1 \le i \le n - 1$ $f^{*}(e_{i}') = \begin{cases} k + 21i - 20; \ 1 \le i \le n; if n is odd \\ k + 21i - 3; \ 1 \le i \le n; if n is odd \\ k + 21i - 12; \ 1 \le i \le n; if n is odd \\ k + 21i - 12; \ 1 \le i \le n; if n is odd \\ k + 21i - 20; \ 1 \le i \le n; if n is odd \\ k + 21i - 20; \ 1 \le i \le n; if n is odd \\ k + 21i - 10; \ 1 \le i \le n; if n is odd \\ k + 21i - 10; \ 1 \le i \le n; if n is odd \\ k + 21i - 10; \ 1 \le i \le n; if n is odd \\ k + 21i - 10; \ 1 \le i \le n; if n is odd \\ k + 21i - 10; \ 1 \le i \le n; if n is odd \\ k + 21i - 10; \ 1 \le i \le n; if n is odd \\ k + 21i - 5; \ 1 \le i \le n; if n is odd \\ k + 21i - 5; \ 1 \le i \le n; if n is odd \\ k + 21i - 5; \ 1 \le i \le n; if n is odd \\ k + 21i - 5; \ 1 \le i \le n; if n is odd \\ k + 21i - 5; \ 1 \le i \le n; if n is odd \\ k + 21i - 5; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 16; \ 1 \le i \le n; if n is odd \\ k + 21i - 15; \ 1 \le i \le n; if n is odd \\ k + 21i - 15; \ 1 \le i \le n; if n is odd \\ k + 21i - 15; \ 1 \le i \le n; if n is odd \\ k + 21i - 9; \ 1 \le i \le n; if n is odd \\ k + 21i - 9; \ 1 \le i \le n; if n is odd \\ k + 21i - 9; \ 1 \le i \le n; if n is odd \\ k + 21i - 9; \ 1 \le i \le n; if n is odd \\ k + 21i - 8; \ 1 \le i \le n; if n is odd \\ k + 21i - 8; \ 1 \le i \le n; if n is odd \\ k + 21i - 8; \ 1 \le i \le n; if n is odd \\ k + 21i - 8; \ 1 \le i \le n; if n is odd \\ k + 21i - 8; \ 1 \le i \le n; if n is odd \\ k + 21i - 8; \ 1 \le i \le n; if n is odd \\ k + 21i - 8; \ 1 \le i \le n; if n is odd \\ k + 21i - 8; \ 1 \le i \le n; if n is odd \\ k + 21i - 8; \ 1 \le n; if n is odd \\ k + 21i - 8; \ 1 \le n; if n is odd \\ k + 21i - 8; \ 1 \le n; if n is odd \\ k + 21i - 8; \ 1 \le n; if n is odd \\ k + 21i - 8; \ 1 \le n; if n is odd \\ k + 21i - 8; \$ $f^*(e_i) = k + 21i - 1; \ 1 \le i \le n - 1$

Volume 6 Issue IV, April 2018- Available at www.ijraset.com

 $f^*(e_i^{xii}) = \begin{cases} k+21i-9; & 1 \le i \le n; if \ n \ is \ odd \\ k+21i-14; & 1 \le i \le n; if \ n \ is \ even \end{cases}$

Here p = 8n, q = 13n-1. Clearly, $f(V) \cup \{f^*(e) : e \in E([P_n; Q_3])\} = \{k, k + 1, ..., k + 21n - 2\}$. So f is a k – Super mean labeling. Hence $[P_n; Q_3]$ is a k – Super mean graph.

P. Example 2.16

50 – Super mean labeling of $[P_2; Q_3]$ is given in figure 2.3:

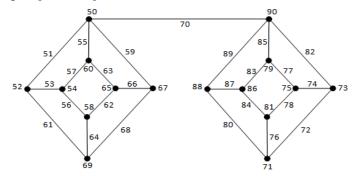


Figure 3: 50 – Super mean labeling of $[P_2; Q_3]$

Q. Theorem 2.17

The graph $T_n \cup T(L_m)$ is a k-Super mean graph for all $n, m \ge 2$. Proof: Let $V(T_n \cup T(L_m)) = \{u_i, v_i; 1 \le i \le n\} \cup \{w_i, w'_i, 1 \le i \le m\}$ and $E(T_n \cup T(L_m)) = \{e_i = (u_i, u_{i+1}), e'_i = (v_i, u_i); 1 \le i \le n-1\}$ $1\} \cup \{e_i'' = (v_{i}, u_{i+1}), e_i''' = (w_{i}, w_{i+1}); 1 \le i \le n-1\} \cup \{e_i^v = (w_{i+1}, w_i'), e_i^{vi} = (w_i', w_{i+1}'), 1 \le i \le n-1\} \cup \{e_i^{iv} = (w_i', w_{i+1}'), 1 \le i \le n-1\} \cup \{e_i^{iv} = (w_i', w_{i+1}'), 1 \le i \le n-1\} \cup \{e_i^{iv} = (w_i', w_{i+1}'), 1 \le i \le n-1\} \cup \{e_i^{iv} = (w_i', w_{i+1}'), 1 \le i \le n-1\} \cup \{e_i^{iv} = (w_i', w_{i+1}'), 1 \le i \le n-1\} \cup \{e_i^{iv} = (w_i', w_i'), 1 \le n-1\} \cup \{e_i^{iv} = (w_i', w_i'),$ (w_i, w'_i) ; $1 \le i \le n$ } be the vertices and edges of $T_n \cup T(L_m)$ respectively. Define $f: V(T_n \cup T(L_m)) \to \{k, k+1, k+2, ..., k+5n+6m-8\}$ by $f(u_i) = k + 5i - 5; \ 1 \le i \le n$ $f(v_i) = k + 5i - 3; \ 1 \le i \le n - 1$ $f(w_i) = f(u_n) + 6i - 5; \ 1 \le i \le m$ $f(w'_i) = f(u_n) + 6i - 3; \ 1 \le i \le m$ Now the induced edge labels are $f^*(e_i) = k + 5i - 2; \ 1 \le i \le n - 1$ $f^*(e'_i) = k + 5i - 4; \ 1 \le i \le n - 1$ $f^*(e_i'') = k + 5i - 1; \ 1 \le i \le n - 1$ $f^*(e_i'') = f(u_n) + 6i - 2; \ 1 \le i \le m$ $f^*(e_i^{iv}) = f(u_n) + 6i - 4; \ 1 \le i \le m - 1$ $f^*(e_i^v) = f(u_n) + 6i - 1; \ 1 \le i \le m - 1$ $f^*(e_i^{vi}) = f(u_n) + 6i; \ 1 \le i \le m - 1$ Here p = 2(m+n)-1, q = 3n+4m-6. Clearly, $f(V) \cup \{f^*(e) : e \in E(T_n \cup T(L_m))\} = \{k, k+1, \dots, k+5n+6m-8\}.$ So f is a k – Super mean labeling. Hence $(T_n \cup T(L_m))$ is a k – Super mean graph.

R. Example 2.18

200 – Super mean labeling of $(T_4 \cup T(L_4))$ is given in figure 4:

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

Volume 6 Issue IV, April 2018- Available at www.ijraset.com

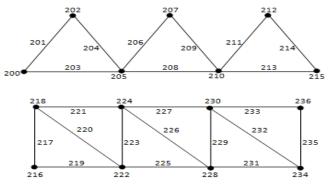


Figure 4: 200 – Super mean labeling of $(T_4 \cup T(L_4))$

S. Definition 2.19: Double $D(F_n)$ is obtained by P_n+2K_1 .

T. Theorem 2.20 The graph $D(F_n)$ is a k-Super mean graph for all $n \ge 1$. Proof: Let $V(D(F_n)) = \{u, v\} \cup \{u_i; 1 \le i \le n\}$ and $E(D(F_n)) = \{e_i = (u_i, u_{i+1}); 1 \le i \le n-1\} \cup \{e'_i = (u_i, u); 1 \le i \le n\} \cup \{u_i, u\}$ $\{e_i^i = (u_i, v); n + 1 \le i \le 2n, 1 \le j \le n\}$ be the vertices and edges of $D(F_n)$ respectively. Define $f: V(D(F_n)) \to \{k, k + 1, k + 2, ..., k + 4n - 2\}$ by f(u) = kf(v) = k + 4n $f(u_i) = k + 4i - 2; \ 1 \le i \le n$ Now the induced edge labels are $f^*(e_i) = k + 4i; \ 1 \le i \le n - 1$ $f^*(e'_i) = k + 2i - 1; \ 1 \le i \le 2n$ Here p = n+2, q = 3n-1. Clearly, $f(V) \cup \{f^*(e) : e \in E(D(F_n))\} = \{k, k + 1, ..., k + 4n - 2\}.$ So f is a k – Super mean labeling. Hence $D(F_n)$ is a k – Super mean graph.

U. Example 2.21:

100 – Super mean labeling of $D(F_7)$ is given in figure 5:

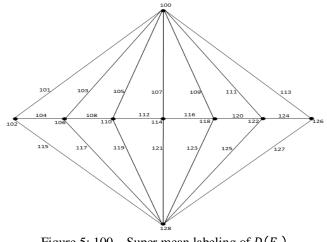


Figure 5: 100 -Super mean labeling of $D(F_7)$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue IV, April 2018- Available at www.ijraset.com

III.CONCLUSIONS

Graph labeling has its own applications in communication networks and astronomy. so, enormous types of labeling have grown. Towards this, k-super mean labeling is also a kind of labeling which is an extension of super mean labeling. we discussed k-super mean labeling of the graphs $n(S(S_3))$, $(P_n; S_2)$, $[P_n; Q_3]$, $T_n \cup T(L_m)$, $D(F_n)$.

IV.ACKNOWLEDGMENT

I offer my sincere thanks to my staff members, parents and friends who have been the pillars, strength and source of constant support throughout the course.

REFERENCES

- [1] G.S. Bloom, S.W. Golomb, Applications of numbered undirected graphs, Proc. IEEE, 65 (1977), 562-570.
- [2] G.S. Bloom, S.W. Golomb, Numbered complete graphsunusual rulers and assorted applications, Theory and Applications of Graphs-Lecture notes in Math., Springer Verlag, New York, 642 (1978), 53-65.
- [3] G.S. Bloom, D.F. Hsu, On graceful digraphs and a problem in network addressing, CongressusNumerantium, 35 (1982) 91-103.
- [4] J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, 18 (2015) # DS6.
- B. Gayathri, M. Tamilselvi, M. Duraisamy, k-super mean labeling of graphs, In: Proceedings of the International Conference on Mathematicsand Computer Sciences, Loyola College, Chennai (2008), 107-111.
- [6] B. Gayathri and M. Tamilselvi, k-super mean labeling of some trees and cycle related graphs, Bulletin of Pure and Applied Sciences, Volume 26E(2) (2007) 303-311.
- [7] F. Harary, Graph Theory, Addison Wesley, Massachusetts (1972).
- [8] P. Jeyanthi and D. Ramya, Super mean labeling of some classes of graphs, International J. Math. Combin., 1 (2012) 83-91.
- [9] P. Jeyanthi, D. Ramya and P. Thangavelu, On super mean graphs, AKCE J. Graphs Combin., 6 No. 1 (2009) 103-112.
- [10] D. Ramya, R. Ponraj and P. Jeyanthi, Super mean labeling of graphs, ArsCombin., 112 (2013) 65-72.
- [11] Rosa, On certain valuations of the vertices of a graph Theory of Graphs (Internet Symposium, Rome, July (1966)), Gordon and Breach, N.Y. and Duhod, Paris (1967) 349-355.
- [12] S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy Science Letter, 26 (2003), 210-213.
- [13] P.Sugirtha, R. Vasuki and J. Venkateswari, Some new super mean graphs, International Journal of Mathematics Trends and Technology, Vol. 19 No. 1 March 2015.
- [14] M. Tamilselvi, A study in Graph Theory- Generalization of super mean labeling, Ph.D. Thesis, Vinayaka Mission University, Salem, August (2011).
- [15] M. Tamilselvi and Akilandeswari K and N. Revathi, Some Results on k-Super Mean Labeling, International Journal of Scientific Research, Volume 5 Issue 6, June 2016, P. No. 2149-2153.
- [16] R. Vasuki and A. Nagarajan, Some results on super mean graphs, International J. Math. Combin., 3 (2009) 82-96.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)