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Abstract: The Oscillation Theorems for a Second Order Delay Difference Equations of  the form
2

( ( )) 0, ( ) ........................(1)n n n nu p u n a   
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1. INTRODUCTION

The purpose of this paper is to present conditions for 

all solutions of the linear delay difference equations of the form

2
( ( )) 0, ( ) ........................(1)n n n nu p u n a   

Where   is the forward difference operator  i.e.  

 2
1 [ ]n n n n nu u u u u       to be oscillatory, and to 

present an oscillation theorem for the more general equation 

( )( ) (u , u ) 0..........................(2)n n n n g nr u p f   

assume the condition without further mentions  { },{ }n nr p

positive real sequence on interval  ( )n a

{ } 0,{ } 0 0 ( ) .n nr p and n m    The assumptions 

on  f and g are stated proceeding Lemma 2 in section.  

Results on the growth and boundenss of non-oscillatory 

solutions are presented in section 3.  By a solution of (1) and (2) 

we mean real sequence { }nu satisfying equation (1) for

( )n a .  We consider only such solutions which are non-

trivial for all large n .   A solution { }nu of (1) and (2) is called 

non-oscillatory if it is eventually positive or negative.  

Otherwise it is called Oscillatory.

The problem of determining oscillation theorem for 

second order nonlinear difference equation has been the subject 

of investigation in [1-3].  Among the papers dealing with this 

subject we refer to [4] in which oscillatory theorem of linear 

difference equations of second order have been established.

The purpose of this note is to give some new criteria 

(sufficient conditions for oscillation of all solutions of (1).  The 
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results we obtain the discrete analogues of some theorem for a 

non-linear differential equation of second order with delay due 

to katasatos [5] and staikes &petsoulat[6]. 

2. MAIN RESULTS

The following Lemma allows the use of technique 

introduced by Coles [1] to give a short proof of a classical 

oscillation Theorem for equation (3).

Lemma 1

0, ( 0),0 ( )n nIf p p n m for all n a     and  

{ }nu is a solutions of equation (1)  that is positive,  then 

0nu  for all n sufficiently  large and there is a constant 

0  such that  

( ( ))n n

n

u

u
  

Proof.

If { }nu is positive, then so is ( ( ))n nu  and there for 

2 0nu  . This means the { }nu is bounded non-oscillatory so 

that if 0nu  , { }nu become zero again.  Therefore which is 

contrary to the hypothesis.  Hence 0nu  for all n

sufficiently  large.  Now suppose that 0n is larger than the last 

zero of n mu  .  Then 0 ( ( )), n m n nn n u u    and 

( ( ))n n n m

n n

u u

u u
 

Let g be a function whose graph is the line tangent to the graph 

of { }nu at ( , )n mn m u  for some 0n n ; that is

( )s n m n mg u s t m u     

Since { }nu is bounded,

n m n m n m

n n n

u u g

u g g
   

Let

n m

n m

u
x

u n m







  

Then 0xg  and because of similar triangles we have

( )
............(4)

( ) [ ]
n m n m n m

n n n m n m

u g ux n m

u g x n u m u
  

 

 
  

  

But n mu  is decreasing so that the last member of (4) increases 

to a positive limit as n   .Hence 

( ( ))n n n m

n n

u u

u u
   

for all n sufficiently  large.  

Theorem  1

{ } 0, 0 ( ) , (1) .n s
s a

If p n m for all n a and p then all solutions of are os




     
proof:

If { }nu be a non oscillatory solution of the equation (1) 

and there  2 0, 0n nu u   

for sufficiently large n Let n
n

n

u

u



 .  Then  (1) becomes

( ( ))2 0n n n
n n

n

p u

u
     
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And since the divergence of the summation s
s a

p



 implies that 

0sp  it follows from Lemma 1  that 

2 0n n np     

Thus for 0n sufficiently large and 0n n

0

0 0

2 0....................(5)
n n

n n n s
s n s n

p   
 

    

Let 
0

2
n

n s
s n

h 


  . Then it follows from (5) that 2
n nh h 

from which it follows that 

0 0

1 1 1
o

n n n

n n
h h h

   

For large n . Which contradiction to fact that 

00n for n n   .

If 1,{ } 0,n n nr p g as n      the all solutions 

equation (2) is oscillatory. 

The following  lemma is helpful is proving an oscillation 

theorem for (2) with non-constant r

If  ( , )f y w has the sign of y and w when they have the 

same sign, and ( , )f y w is non-decreasing in y and w . For 

the oscillation Theorem presented here we make the following 

assumptions on :f and g

(i) ng as n   

(ii) If y and w are one sign,  the ( , )f y w has that 

sign

(iii) ( , )f y w is bounded and zero.

Note that condition (ii) and (iii) is satisfied and f is non 

decreasing in y and w .

Lemma 2

1
{ } 0, ( 0), 0,n n n

s a s

If p p r
r





     Conditions (i)-

(iii) hold and  { }nu is a solutions of equation (1) that is 

positive, then 0nu  for all n sufficiently large

Proof

If { } 0nu for large  n and lemma is false. Then there is a 

point on larger than the last zero nu and larger than the last zero 

g( )nu such that 
0 00.nu for n n  

( )( ) ( , ) 0n n n n g nr u p f u u     and therefore

0 0
0n n n nr u r u    it follows dividing by nr and summing  

from 0n to n and  n   then { }nu is negative.  This is 

contrary to the hypothesis. A similar argument treats the case of 

eventually positive or eventually negative If { } 0nu for

large  n

Theorem  2

1
0, 0, ,n n s

s a s as

If p r p
r

 

 

       Conditions (i)-(iii) 

hold and   { }nu is a solutions of equation (2) is oscillatory if 

interval ( , )a 

Proof:
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Suppose there is a solutions { }nu on the interval ( , )a  and 

that If { } 0nu for large  n . 

By lemma 2 0nu  for all n sufficiently large so that { }nu

is non-decreasing; it then follows from conditions (i)-(iii) that 

there is positive constant  such that ( )( ( ), )g nf g n u for 

all n sufficiently large.  Thus ( ( ) 0n n nr u p    and for 

on sufficiently  and on n and Taking summation

0 0

0

0.......................(6)
n

n n n n s
s n

r u r u p


    

But 
0

n

s
s n

p as n


    this contrary that to lemma.  A 

similar argument left to reader if 0nu for large n

3. Boundedness and Non-Oscillation

The proof of Lemma 2 suggests the following theorem

Therom 3

If (i)-(iii) hold 0 { }n np and u is a non-oscillatory 

solution of (2) on an interval ( , )a  , then there are non-

negative constants 1 2,  such that  
0

1 2

1
.

n

n
s n s

u
r

    In 

particular, if 
0

n

s
s n

p


  then all solutions existing on ( , )a 

are oscillatory or bounded.

Proof:

If  { }nu is non-oscillatory solution of (2) that is 

positive then ( ) 0,n nr u   for all n sufficentely large.  

Summing the 0n to n

0 0 0

0

1
0

n

n n n n
s n s

u u r u
r

    

We take  
0 0 01 2,n n nu r u    if { }nu is 

negative for all large n , the process used above leads to the 

inequality

0 0 0

0

1n

n n n n
s n s

u u r u
r

   

In this case 

0 0 0

0

1
0

n

n n n n n
s n s

u u u r u
r

       

This complete the proof

Theorem 4

Let 0,np  suppose that  { }np is real sequence with 

0 ( )n m  suppose that 1,  is ratio of odd integers 

the signum fuctions :

n n nsgn 1 if { } 0, sgn 1 if { } 0,sgn 0 0nu u u u     

Then the condition 

................................(7)s
s a

sp




 
Is necessary condition that all solutions of the equation 

2 1
( ( ))( ) sgn 0......................(8)n n n n nu p u u




  
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Are oscillatory.   For  1,  (7) is a sufficient condition that all 

bounded solutions of (8) are oscillatory.

Proof:

For 1,  , if { }nu is a bounded solution, and { } 0nu  for all  

n sufficiently large,  Then there ia point  c such that 

2 0, 0, 0,n n nu u u for n c      . then  

( ( )), n m n nn c u u    so the multiplying  
( ( ))n n

n

u 

by (8) 

and summing  c to n

2

...........................(9)
n n

s
s

s c s cs m

s u
sp

u 


  

summing the fact that  s m su u   it is clear that (9) can be 

written as 

2
........(10)

[ ]

n
n n n

s s s m
s m s

s c s c s cs m s mc

su s u u
u sp

u u



   

   
    

 
  

Since { }nu is bounded, the left side of (10) is bounded below 

while the right tends 
This contradiction completes the proof.  

Example:1

Consider the difference equation

2
12

0.......................(11)
1n n

n
u u

n   


All condition to Theorem 1 to Theorem 4 satisfied   and  all 

solution of equation (11) is oscillatory.
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