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Abstract: The main aim of this paper is to present a general observation of popular longest common subsequence algorithms and 
study their functions in multiple applications. There are algorithms which calculate only the length but not the actual LCS and 
others are which do determine the actual LCS, we need a clear distinction among them in order to determine the complexity 
since space and time complexity rely on it. 
Sequence matching is an approach to find a common subsequence among two or more sequences. The subsequence with the 
largest length is the LCS. This paper is a survey which briefly describes the successful attempts made to get the longest common 
subsequence of two strings. The comparisons of different algorithms are made and their performances are also analysed. 
Keywords: Sequence matching, DNA sequence, Dynamic Programming, Longest Common Subsequence, Pattern Matching. 

I. INTRODUCTION 
Sequence comparison is a fundamental operation used in various application of computer science and information processing. A 
spelling error correction program tries to find the dictionary entry which resembles most a given word, in molecular biology as it 
can be used to compare two or more given sequences. Sequence comparison is especially beneficial for investigating genes. 
In molecular biology sequence is represented as symbols of nucleotides. DNA and RNA are sequences of 4 characters Ʃ=(A,C,G,T) 
and Ʃ=(A,C,G,U) respectively. 
During the study of expansion of long molecules which are generally proteins or nucleic acids. It is generally observed that 
researches have tried to do the construction of big set of correspondences or matches between such kind of two molecules. 
The series of the sequence can be achieved by eliminating some elements of the strings by not disturbing the placement of the 
strings. A possible longest common subsequence is supposed to be searched from the sequences present in common between two of 
the sequences. To test the homology between two organisms we will have to compare the DNAs or protein sequences. A 
verification is required as a new sequence or homology when we discover a new biological sequence. It's a good way to know the 
exact sequence matching of the DNA in recapture of specific erudition like genetics, genetic disorder, parent-ship, medication, etc. 

A.  What is Longest Common Subsequence? 
The LCS is an attempt of seeking the longest subsequence which is common to all sequence in a set of strings. Original sequences 
may not have continuous positions in subsequence to acquire. In information processing comparisons of data programs like 
molecular biology are involved in getting the idea of longest common subsequence problem. 
In our subject, the maximum length subsequence LCS(X,Y) is the part of a common subsequence of string X and Y. The 
motivational factor of this biological LCS problem is that proteins and nucleic acids like DNA and RNA can be portrayed as 
sequences from a set of finite alphabet. It is obvious to find the closest common ancestors to compare two DNA sequences. The 
process of insertion of new symbols into representing a string, where ancestral substrings are the part of representing molecule. 
Thus, the length of the longest common subsequence of two strings is a rational standard of how nearby both strings are. 

B.  Length of LCS 
The length of LCS of the two strings X and Y is denoted by r (X, Y), or when the input strings are known, by r. 
Length of LCS (r)= c[m-1,n-1] 

C.  Dynamic Programming 
On comparing greedy algorithm with Dynamic programming algorithms we found that greedy algorithm treated the solution as 
some sequence of steps and picks the locally optimal choice at each step but dynamic programming algorithm showed that it is the 
technique for solving problems with overlapping subproblems. One more thing was observed that greedy algorithm did not 
guarantee an optimal solution. Therefore, we reach to a conclusion that dynamic programming algorithm will examine the 
previously solved subproblems and provide the best and accurate solution by optimization.  
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In the 1950s "Richard Bellman" an American mathematician gave the concept of Dynamic programming which is a technique to 
solve problems by overlapping smaller subproblems in order to evade recompilation. Lcs(X,Y) is typically solved with the dynamic 
programming technique and filling an m x n table. 

II. LITERATURE REVIEW 
The research on literature of LCS algorithms renders a comprehensive range of opportunities to attune the system to enhance the 
overall performance. 

1) The Levenshtein distance is a method to find the edit distance between two sequences by counting the number of insertions, 
deletions, and substitutions needed to makes valuable changes in the string. Wagner and Fischer in the year 1974 introduced an 
algorithm using the concept of a matrix in order to get the solution for this problem with dynamic programming. This algorithm 
just gives the length of LCS as a result but not the LCS. 

2) Using divide-and-conquer strategy and dynamic approach altogether, Hirschberg in 1975 introduced a concept to find LCS. 
Now, the problem is divided recursively into smaller and easier subproblems and solved individually and then combining their 
solution to solve the whole problem. Firstly, the matrix is traversed in the forward direction and then it is traversed in the 
reverse direction. The time and space complexity of this algorithm is O(mn) and O(m) respectively[2].  

3) Dominant matches was another approach given by Hirschberg in 1977. The complexity of this algorithm is O (rn+nlogn) here r 
is the total number of ordered doublets at which the matching of two strings is performed. 

4) J.W. Hunt and T.G. Szymanski’s in the year 1977, stated that computing LCS from two strings is equivalent to find the longest 
monotonically increasing path in the graph, where xi = yj. Hence introduced an algorithm on the same concept used in 
determining the longest increasing path. 

5) In this case, we select consecutive symbols from X and traverse Y in reverse order in order to search for matches until all the 
elements of Y has been traversed. The solutions to these subprobelms are then merged in order to get the Longest Common 
Subsequence as a result. The process gets terminated as we get the optimal solution. The time complexity of this algorithm is 
O(n (m - r)). This method is used for fast processing to fetch the LCS when the given strings are of a large length and are 
suitable for similar texts. 

6) Another algorithm was published by Apostolico, A. & Guerra in 1987, an alternative to support the framing of the LCS. The 
time complexity of this algorithm is O(mlogn+dlog (2mn/d)) where d is the smallest distance of the next nearest common 
elements. The closest occurrence of elements in Y is a representation of each symbol.  

7) In the year 1990 Wu ET puts an effort to minimize the edit distance problem to reduced edit distance and apply it to find LCS. 
This reduced edit distance in spite of calculating the actual edit distance, it is directed to reduce the number of deletion. Hence, 
this algorithm is suitable for small strings. The time complexity of this algorithm is O(n (m-r)). 

8) Rick in 1955 introduced an algorithm based on advancing from contour to contour which was compared with other existing 
algorithms and proved to be better among them. Contour is a region where the matching values are found & it was bounded by 
broken lines. The concept of dominant matches is used in this algorithm achieved by a class of dualization. The time 
complexity of this algorithm is O(min {(rm), r (n-r)}). 
 

A. Some Related Works 
1) The string editing problem is as attempt of transforming edit operation to minimise the cost. There is a specific cases of string 

editing that involves the longest common subsequence problem [1]. 
2) This is an attempt to use structures like trees and arrays in order to minimise the problem of storing, transforming and fetching 

information. The main aim of pattern matching is to fetch all the information of that unit[7]. 
3) In this paper an attempt is made to analyse all the aspects involved in LCS and compare it with all other algorithms meant for 

finding the longest common subsequence[4]. 

III. THE EXISTING APPROACH 
The The common and popular algorithm to find LCS between two strings is the improved dynamic programming algorithm. A DNA 
is a linear sequence as a basic structure of x1, x2, x3... xm of nucleotide. Each xᵢ is recognized by the set of the four alphabets which 
are: {A, T, G, C}. Applications in the field of bioinformatics require comparing the DNA of various organisms. A sample of DNA 
comprises a sequence of molecules known as bases, which are possibly Adenine, Cytosine, Guanine, and Thymine i.e. {A, C, G, T}. 
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1) Step 1: Identifying a longest common subsequence. 
Theorem: The optimal substructure property of LCS problem. 
Let, X= (x1, x2, x3... xm) and Y= (y1, y2, y3…, yn) be sequences. Let C= (c1, c2, c3…, cᵢ) be any LCS of X & Y. The theorem states 
three cases given below: 
a) If xm = yn, then cᵢ= xm= yn and LCS of Xm-1 and Yn-1 is Ci-1.  
b) If xm≠ yn, then ci ≠ xm and LCS of Xm-1 and Y is C.  
c) If xm ≠ yn, then ci ≠ yn and LCS of X and Yn-1 is C. 

 
2) Step 2: Generate a recursive loop for LCS solution 

                

3) Step 3: Calculating the length of LCS 
The length of LCS of strings X and Y is denoted by r (X, Y), or when the input strings are known, by r. 
Length of LCS (r)= C[m-1,n-1]. 
Algorithm 
a) Get two string X and Y from the user of length m and n 
b) Add prefix to both the strings 
c) Take two double dimensional array C[0..m, 0..n] for storing entries of matching subsequense and B[1..m, 1..n] for back tracking 
d) Insert 0(zero) for all the entries of first row 
e) Insert 0(zero) for all the entries of first column 
f) In a recursive nested loop if Xi=Yj then C[i,j]=C[i-1,j-1]+1 and B[i,j]=”\” 
g) elseif C[i-1,j]>= C[i,j-1] then C[i,j]=C[i-1,j] and B[i,j]=”↑ 
h) otherwise C[i,j]=C[i-1,j-1]+1 and B[i,j]=”←” 
i) return both the matrices C and B 
Figure. 1 illustrate the length of LCS on the sequences X = (C, B, A, B, D, C, B) and Y =(B, D, A, C, B, C).  

4) Step 4: Backtracking to construct an LCS 
In the two given strings X and Y, let’s say C be a common subsequence between the two strings if the subsequence C exists in both 
the strings[5]. In the given figure X= (C,B,A,B,D,C,B) and Y= (B,D,A,C,B,C), the sequence (B,A,C) is common but not the longest 
common subsequence of X and Y. however, since it has length 3 whereas the sequence (B,A,B,C), is also exactly same in both X 
and Y, with length 4. Hence the sequence (B,A,B,C) is an LCS of X and Y, same as the sequence (B,D,C,B), since X and Y have no 
common subsequence of length more than 4. 
We are given two sequences X and Y and we wish to have a maximum-length common subsequence which can be solved using 
dynamic programming. 

 
Fig. 1 LCS matrix of X and Y 
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With this procedure, we meet the elements of this LCS in reverse order by traversing the longest common subsequence using 
backtracking. In order to get an appropriate result, the following recursive method is used to print the LCS of X and Y. 
STEP 1- if i==0 or j==0 then terminate the loop 
STEP 2- if b[i,j]==”\” then i=i-1 and j=j-1 
STEP 3-       PRINT xi 
STEP 4- elseif b[i,j]==”↑” then i=i-1 
STEP 5- otherwise j=j-1 
STEP 6- Goto STEP 1 
In Figure. 1, this procedure gives BABC as a result. The running time of this procedure is O(m+n), since it has nested loop of i and j 
which decrease by 1 in each iteration. 

IV.  ISSUES WITH PREVIOUS ALGORITHMS 
1) Sub Problem One: To eliminate the prefixes (an empty subsequence) added in both the sequences or strings  X and Y. 
Previously we used to add prefix to both the sequences. 
For example, if X= {C, B, A, B, D, C, B} and Y = {B, D, A, C, B, C}. 
We are supposed to add Prefix to both the Strings 
i.e. X= {Φ, C, B, A, B, D, C, B} and Y = {Φ, B, D, A, C, B, C}. 
But, in the revised Algorithm the prefixes of the sequences can be eliminated. 
2) Sub Problem Two: To create an LCS matrix (m, n) instead of (m+1, n+1) by eliminating the first row and first column 

(initialized 0), in order to reduce the iterations. 
We add prefixes to both the sequences in order to get the initial values as zero(0) to start tracing both the sequence and find the 
common elements in both. Hence we have to take the matrix of (m+1, n+1) size. 
But, in the revised Algorithm we don’t need to initialize the first row and column by 0 separately and hence we can remove the first 
row and column and reduce the size of the matrix. 

 
Fig. 2 Comparison between two matrices 

3) Sub Problem Three: To reduce Time Complexity. 
After reducing the iteration, most probably we can reduce the time complexity. 
In the LCS algorithm, for example, we can eliminate the b table altogether. Each c[i,j]entry depends on only three other c table 
entries: c[i-1,j -1], c[i-1,j], and c[i,j-1]. Given the value of c[i,j], we can determine in O(1)time which of these three values was used 
to compute c[i,j], without inspecting table b. Thus, we can reconstruct an LCS in O(m+n) time using a procedure similar to PRINT-
LCS. 
 Although we save Ɵ(mn) space by this method, the auxiliary space requirement for computing an LCS does not asymptotically 
decrease, since we need Φ(mn) space for the c table anyway. 
4) Sub Problem Four: To reduce Space Complexity by improving the Code. 
We can, however, reduce the asymptotic space requirements for LCS-LENGTH, since it needs only two rows of table c at a time: 
the row being computed and the previous row.  
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It is stated in the text book that “this improvement works if we need only the length of an LCS; if we need to reconstruct the 
elements of an LCS, the smaller table does not keep enough information to retrace our steps in O(m+n) time”[6].  After modifying 
the algorithm, I would say that it is possible to retrace the table even after eliminating the first row and first column of the table, and 
making it smaller in O(m+n) time. 

V. PROPOSED APPROACH 
1. To eliminate the prefixes (an empty subsequence) added in both the sequences or strings X and Y. 
2. To create an LCS matrix (m, n) instead of (m+1, n+1) by eliminating the first row and first column (initialized 0), in order to 
reduce the iterations. 
3. After reducing the iteration, most probably we can reduce the time complexity. 
4. To reduce Space Complexity by improving the Code. 

VI. CONCLUSION & FUTURE SCOPE 
In this paper we have proposed a comprehensive observation of the LCS algorithms from sequences of DNA or protein to analyse 
the problems and get the key idea which is helpful to enhance its performance. I feel that there is still some scope to improve the 
time complexity and performance of this approach through different data structure. Once the algorithm is proposed, you observe a 
scope of an amendment in the algorithm to enhance the performance. 
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