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Abstract: Neural network had become rapidly apparent that despite being very useful in some domains, it failed to capture 
certain key aspects of human intelligence. According to one line of speculation, this was due to their failure to mimic the 
underlying structure of the brain. In order to reproduce intelligence, it would be necessary to build systems with a similar 
architecture. When a neuron in the brain is activated, it fires an electrochemical signal along the axon. This signal crosses the 
synapses to other neurons, which may in turn fire. A neuron fires only if the total signal received at the cell body from the 
dendrites exceeds a certain level (the firing threshold). The result shows that within offset 6ms in the horizon have distorted 
amplitude repeatedly for the three wavelets, which is mapped out in the model to be fault line. This means within the horizon, 
fault (f) has been detected which is a major hydrocarbon indicator that can be interpreted using 3D tools. The second horizon 
also shows a synclinal structure which is an indication of the existence of a fault line (ࢌ૛) in the lower bed of the horizon. These 
two lines can be interpreted to be hydrocarbon container within this region as a closure which is a structural trap. 
Key words: Horizon, Structural Trap, Fault, anticlines and synclines 

I. INTRODUCTION 
Neural networks grew out of research in Artificial Intelligence; specifically, attempts to mimic the fault-tolerance and capacity to 
learn of biological neural systems by modeling the low-level structure of the brain (Patterson, 1996: 3-10). The main branch of 
Artificial Intelligence research in the 1960s -1980s produced Expert Systems. These are based upon a high-level model of reasoning 
processes (specifically, the concept that our reasoning processes are built upon manipulation of symbols). The brain is principally 
composed of a very large number (circa 10,000,000,000) of neurons, massively interconnected (with an average of several thousand 
interconnects per neuron, although this varies enormously). Each neuron is a specialized cell which can propagate an 
electrochemical signal. The neuron has a branching input structure (the dendrites), a cell body, and a branching output structure (the 
axon). The axons of one cell connect to the dendrites of another via a synapse.  The strength of the signal received by a neuron (and 
therefore its chances of firing) critically depends on the efficacy of the synapses. Each synapse actually contains a gap, with 
neurotransmitter chemicals poised to transmit a signal across the gap. One of the most influential researchers into neurological 
systems (Donald Hebb) postulated that learning consisted principally in altering the "strength" of synaptic connections. For 
example, in the classic Pavlovian conditioning experiment, where a bell is rung just before dinner is delivered to a dog, the dog 
rapidly learns to associate the ringing of a bell with the eating of food. The synaptic connections between the appropriate part of the 
auditory cortex and the salivation glands are strengthened, so that when the auditory cortex is stimulated by the sound of the bell the 
dog starts to salivate. Recent research in cognitive science, in particular in the area of non-conscious information processing, have 
further demonstrated the enormous capacity of the human mind to infer ("learn") simple input-output co-variations from extremely 
complex stimuli. To recognize a pattern, one can use the standard multi-layer perception with a back-propagation learning algorithm 
or simpler models such as self-organizing networks (Kohonen, 1997) or fuzzy c-means techniques (Bezdek, 1981; Jang and Gulley, 
1995). Self-organizing networks and fuzzy c-means techniques can easily learn to recognize the topology, patterns, or seismic 
objects and their distribution in a specific set of information. Much of the early applications of pattern recognition in the oil industry 
were highlighted in Aminzadeh (1989a). An usual though sophisticated form of structural modeling under earthquake loading is the 
iterative integration of the set of differential equations which establish equilibrium under dynamic conditions, usually referred to as 
equation of motion (eq1) 
Müt  +்ܥůt + ்ܭut = Pt                                                             1 
In which ü(t),  ů(t) and u(t) are respectively the vectors of nodal acceleration, velocity and displacement at instant t; M denotes the 
mass matrix, C represents the tangent matrix of damping and K represents tangent matrix of stiffness both at instant t, while P(t) is 
the vector external equivalent forces. 
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There are two basic approaches to solution of equation of dynamic equilibrium of eq1 as viz; 

In order to use direct integration of equation 1, it is necessary to subdivide the time domain in a number of finite intervals of 
duration t. Equation 1 develops, hence to the following form: 
Mü  +Ců + Ku = P                                                               2 
The integration of the above system of equation may be attempted by explicit or implicit methods as discussed by Clough and 
Penzien 1993.  
If an explicit method is adopted, the response at time ݐड़ାଵ       may be defined by establishing equilibrium at time   ݐड़i.e ,    equation 2 
needs to be solved once per step.                                       
If contrarily, implicit method is to be used then it is necessary to define a rule of variation for the acceleration, and therefore, 
velocity and displacement in each time step. Consequently, the solution at the time ݐड़ାଵ depends on the values of  ü(t), ů(t) and u(t), 
but also depends on the contemporaneous values at time ݐड़ାଵ. it is therefore likely that equation 2 needs to be solved iteratively until 
adopted values of acceleration enables equilibrium. If the earthquake to which the structural model is to be analyzed is presented by 
a ground motion record, such as the one of figure 1 the chosen time step (usually constant) for the iterative resolution of the system 
of equation 2 implies that the accelerogram be defined by a finite steps of acceleration. The system of equation can then be solved in 
order to satisfy the prescribed conditions for dynamic equilibrium for every time interval under consideration, once for explicit 
method or more than once for implicit ones.       

II. MODELLING ARTIFICIAL NEURAL NETWORK AND SYSTEM MODIFICATION 
In a bid to understand modeling of neural networks, it is worth noting that reference is made to the biological system from which it 
evolved and a concise mathematical model will do just fine. 

A. The Biological Model 
Artificial neural networks born after McCulloc and Pitts introduced a set of simplified neurons in 1943. These neurons were 
represented as models of biological networks into conceptual components for circuits that could perform computational tasks. The 
basic model of the artificial neuron is founded upon the functionality of the biological neuron. By definition, “Neurons are basic 
signaling units of the nervous system of a living being in which each neuron is a discrete cell whose several processes are from its 
cell body” 

 
Figure 1: Biological Neuron 

The biological neuron has four main regions to its structure. The cell body, or soma, has two offshoots from it. The dendrites and the 
axon end in pre-synaptic terminals. The cell body is the heart of the cell. It contains the nucleolus and maintains protein synthesis. A 
neuron has many dendrites, which look like a tree structure, receives signals from other neurons. A single neuron usually has one 
axon, which expands off from a part of the cell body. This I called the axon hillock. The axon main purpose is to conduct electrical 
signals generated at the axon hillock down its length. These signals are called action potentials. 

B. The Mathematical Model 
Once modeling an artificial functional model from the biological neuron, we must take into account three basic components. First 
off, the synapses of the biological neuron are modeled as weights. Let us remember that the synapse of the biological neuron is the 
one which interconnects the neural network and gives the strength of the connection. For an artificial neuron, the weight is a 
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number, and represents the synapse. A negative weight reflects an inhibitory connection, while positive values designate excitatory 
connections. The following components of the model represent the actual activity of the neuron cell. All inputs are summed 
altogether and modified by the weights. This activity is referred as a linear combination. Finally, an activation function controls the 
amplitude of the output. For example, an acceptable range of output is usually between 0 and 1, or it could be -1 and 1. 
Mathematically, this process is described in the figure 2 below: 

 
Figure 2: Mathematical Model of Biological Neuron 

From this model the interval activity of the neuron can be shown to be:  

 
The output of the neuron, ݕ௞, would therefore be the outcome of some activation function on the value of ݒ௞. 

C. Buckingham Pi Theorem 
In attempting to solve a problem, an engineer often tries analytic mathematics methods first. Equations stating the relations that 
must be satisfied are set up. The Buckingham pi theorem is a very powerful tool of dimensional analysis. This theorem is 
particularly well adapted for use by engineers since little mathematical knowledge is necessary. The underlying physical principles, 
however, must be well known. This theorem was formulated by Dr. Edgar Buckingham of the Bureau of Standards. Initially 
dimensions are analyzed using Rayleigh’s Method. Alternatively, the relationship between the variables can be obtained through a 
method called Buckingham’s π. Buckingham’s pi theorem states that: If there are n variables in a problem and these variables 
contain m primary dimensions (for example M, L, T) the equation relating all the variables will have (n-m) dimensionless groups. 
Buckingham referred to these groups as π groups. The final equation obtained is in the form of: πଵ= f (πଶ, πଷ, ….. π௡ି௠) NOTE: 
The π groups must be independent of each other and no one group should be formed by multiplying together powers of other 
groups.  This method offers the advantage of being simple than the method of solving simultaneous equations for obtaining the 
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values of the indices (the exponent values of the variables). In this method of solving the equation, there are 2 conditions:  Each of 
the fundamental dimensions must appear in at least one of the m variables  

III. ENGINEERING APPLICATION OF BUCKINGHAM’S PI THEOREM. 
As an introductory problem leading up to the theorem, consider the following very simple example: 
Suppose it is desired to find the time t required for an object traveling at a constant velocity (v) to traverse a distance d. The relation 
t=d/v is unknown, and it is desired to solve the problem by analysis. A start is made by assuming (justification for this assumption 
will be given later) that the equation for t takes the following form: t=݀ܥ௔ݒ௕ . Where C is a numerical constant and a, and b are 
unknown exponents. Since t has the dimension of time; d, that of length; and v, that of length divided by time, it is obvious that if 
the equation is to be dimensionally consistent, a must equal 1 and b must be -1. Hence t= C (d/v). The constant t may be evaluated 
rather easily in the laboratory by a single experiment, for example, by pulling a cart at constant velocity and measuring the time 
required to travel a given distance. Although the above example Is rather trivial, it illustrates one important point: a constant in an 
equation was evaluated by a single experiment. The equation thus formed, however, applies in all cases. The Buckingham pi 
theorem is basically just a refinement of the method used in this example. The pi theorem is somewhat more sophisticated and may 
be applied to more intricate problems. The Buckingham pi theorem state that if n quantities (force, viscosity, displacement, etc.) are 
concerned in a problem and if these n quantities are expressible in terms of m dimensionless groups which can be formed by 
combinations of the quantities. If the (n-m) groups are called P1, P2, P3, etc., then the solution of the problem must take the form: F 
(P1, P2, P3,…)=0. It will be noted that this equation can be solved for any particular pi. Some example illustrating the use of the pi 
theorem will be given. The symbol for a dimension will be taken as the capital of the first letter in the name of the dimension. Thus 
M is taken as the symbol for mass; L, for length; T, for time, etc. As the first example, consider the problem of a navel architect who 
wishes to plot the water resistance to motion of a ship versus the velocity of the ship. An analytical approach was tried but 
difficulties were encountered the pi theorem was restored to. The force of water resistance will in general depend upon the shape of 
the ship. However if consideration is limited to ships of similar shapes, then shape need no longer be considered. In this case some 
“characteristic linear dimension” should be specified to indicate relative size. Then the important qualities in concentration with this 
problem are:P = force on the ship =  ML

Tൗ  
S=immersed surface area = Lଶ 
I=a liner dimension (to indicate relative size) = L 
v(Nu)=kinematic viscosity of water = ܮ

ଶൗܶ  

V=velocity of the ship =L
Tൗ  

ρ=density of the fluid = M Lଷൗ  
It will be seen that there are six quantities and three dimensions. Hence 6-3=3 pi’s are expected. 
The general expression for a pi takes the shapes: 
π = PୟSୠIୡvୢVୣρ୤ 
Substitution the dimensional equivalents: 
π = (MୟLୟ Tୟ⁄ )(Lଶୠ)(Lୣ)(Lଶୢ Tୢ⁄ )(Lୣ Tୣ⁄ )(M୤ Lଷ୤⁄ ) 
If the pi is to be dimensionless, the exponent of M, N, and T must add up to zero separately. 
Whence: 
a+f = 0 (For M) 
a + 2b + c + e – 3f = 0(For L) 
-2a – d – e = 0 (For T) 
There are six unknowns and three equations; hence, values may be arbitrarily assigned to three variables and the values of the other 
three variables determined from the above equations. Thus for ܲିା choose a= 1, c= 0, e= 0. Inserting these values in the equations, 
one finds that     f= -1, d= -2, b= 0. 

ܲ = ଵߨ ܸଶߩൗ  

For P2, choose a = 0, b = 0, e = 1. Solving the system of equations, one discovers that f= 0, c= 1, d= -1.                       ߨଶ = ܸܫ ൗݒ  
Since ܫଶ ܵ⁄  is obviously a dimensionless quantity, 
ܫ = ଷߨ   

ଶൗܵ  
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Then from the pi theorem: F ( ܲ ܸଶߩ,ൗ ܸܫ ൗ,ݒ ଶൗܵܫ  ) = 0 

If attention is restricted at present to ships which are similarly loaded (that is, each ship displaces relatively the same amount of 
water), then the ratio ܫଶ ܵ⁄  will be the same for ships and may be omitted here. 

Then F (ܲ ܸଶߩ,ൗ ܸܫ ൗݒ ) = 0; Solving for ܲ ܸଶߩൗ  = F (ܸܫ ൗݒ ) 

Now our naval architect could experiment on a model boat, varying the velocity of the model boat with respect to the fluid in which 
it floats and measuring the force upon the boat. Then if instead of merely plotting P versus V, he would plot ܲ ܸଶߩ⁄  vertically 
against ܸܫ ⁄ݒ  horizontally, he would have a curve which, according to the pi theorem is m, applies to all ships. To find the curve of 
P versus V for any ship, it is merely necessary to alter the coordinate of the above curve by the appropriate values of ρ, v, I. The 
simplicity resulting from the use of the pi theorem is apparent from these results. A single curve shows the effect of five variables. If 
the data were treated in the more conventional manner, plotting P versus V as parameters, and if just five values of each parameter 
were considered, it would be necessary to plot 5ଶ = 125 curves. It might be that the navel architect would wish data on just a few 
specific points instead of a complete curve  In this case the analysis is somewhat simpler. Let primes refer to quantities connected 
with model boat, and let quantities without primes refer to the full-sized ship. Then 

ܲ
ܸଶߩൗ  = F (ܸܫ ൗݒ )     (1) 

ܲ′
ܸ′ଶߩ′ൗ  = F (ܫ′ܸ′ ൗ′ݒ )                 (2) 

Now if the argument of the function f (that is, ܸܫ ⁄ݒ ) is the same for both the model and the full sized ship, then f will have the same 
value in each case. 

Hence if  

ܸܫ)  ൗݒ ′ܸ′ܫ) = ( ൗ′ݒ )                                             (3) 

        V’ = (ܫ′ݒ′ ⁄′ܫݒ )V 

Then (1) divide by (2) : 

P = (ݒଶߩ ⁄ߩଶ′ݒ ) P’     (4) 

(ܲ ⁄ߩଶݒ ߩଶ′ݒ)( ܲ′⁄ ) = f(ܸܫ ⁄ݒ )/f(I’V’/v’) 

Hence if the model is given the velocity indicated by equation (3), then the force on the model and the real ship will be related by 
(4). Note that the mathematical manipulations used above are equivalent merely to equating the two pi’s for the model and for the 
full-sized ship. Now if the discussion is not limited to similarly loaded ships, then the quantity ܫଶ/ܵ will have different values for 

different ships, and this quantity must be considered. In this case: ܲ ܸଶߩൗ  = f (ܸܫ ൗݒ , ܫ
ଶൗܵ ) and it will be necessary to plot ܲ ܸଶߩൗ  

versus ܸܫ ൗݒ  for different values of ܫ
ଶൗܵ   as a parameter. The artificial neural networks which we describe in this course are all 

variations on the parallel distributed processing (PDP) idea. Then architecture of each network is base on very similar building 
blocks which perform the processing. In this section we first discuss these processing units and discuss different network topologies. 
Learning strategies as a basis for an adaptive system will be presented in the last section. 

A. Networks With Threshold Activation Function  
A single layer feed-forward network consists of one or more output neurons o: each of which is connected with a weighting factor 
߱ἰ௢ to all of the inputs i. In the simplest case the network has only two inputs and a single output. The input of the neuron is the 
weighting sum of the inputs plus the bias term. The outputs of the network are formed by the activation of the output neuron which 
is some function of the input. 
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  Y=F(∑ ߱௜ 
ଶ
௜ୀଵ  (ߠ  +  ௜ݔ

The activation function F can be linear so that we have a linear network, or nonlinear. In this section we consider the threshold {or 
Heaviside or sgn} function. 

ቄ =(ܵ)ܨ   ݏ ݂݅       1 > 0
 ݁ݏ݅ݓݎℎ݁ݐ݋   1−

The output of the network thus is either +1 or -1 depending on the output. The network can be used for classification task. It can be 
decided whether an input pattern belongs to one of the two classes. The separation between the two classes in this case is a straight 
line, given by the equation (5) 

߱ଵݔଵ + ߱ଶݔଶ  + θ = 0            (5) 

The single layer network represents a linear discriminant function. 

Equation (5) can be written as; 

ଶݔ =  ఠభ
ఠమ
ଵݔ −

ఏ
ఠమ

              (6) 

And we see that the weights determine the slope of the line and the bias determines the offset (i.e., how far the line is from the 
origin). Note that also the weights can be plotted in the input space: the weight vector is always perpendicular to the discriminant 
function. 

 + 

 + 

  o o        + + + 

 o ߱ଵ  + + 

 o + 

    

    

 

Figure 3: Geometric representation of the discriminant function and the weights. 

IV. METHODOLOGY 
Seismic waves either generated by earthquakes or artificial explosion near the Earth surface are considered to be sinusoidal waves of 
varying amplitudes depending on the characteristics of sub-surface in which they travel. In this work piece, the equation of wave 
that is used in modeling the neural network is of the form: 

P(x, y, z, t) = Acos(߱t+ φ)                                                        (7) 
Where ω = Angular Frequency in radians/second = 2π݂ 

݂= Frequency ( cycles/second or hertz) 
A= Amplitude of wave in metres(m) 
Φ = phase in rad, φ = ଶП௫

ఒ
 

  λ= wavelength in metres (m)  
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These terms completely characterize wave-fields in space-time, frequency-space, and frequency-wave-number. We can think of 
wave-field as actually being the sums of sinusoidal style waves having the general form of Equation 7, where A = A(x, y, z, ω = 
2π ݂) is a positive amplitude as a function of spatial position (x, y, z) and frequency, and φ = φ(x, y, z, t) is the so called wavelet 
phase, it is worth noting that the network is trained such that negative amplitude is not classified, since any wave whose amplitude 
falls short of a specified positive value is classified as noise. The main point is that the wave-fields actually exist in three-
dimensional space-time and can be characterized in many different ways. In this research, we will mostly be concerned with wave-
fields measured on one surface. As any given sinusoid propagates through the Earth, its wavelength and amplitude change as 
functions of both reflection strength and sound speed. Although, these quantities can also change purely as a function of the material 
through which they are propagated.1 

A. Analysis of Modeled Equation 
To deploy a model, we apply the Buckingham’s PI theorem to equation 7. 
Writing the equation as a function we have: 
F {ܲ(ݎ, ,ܣ,(ݐ  0 = {݂,߮,ݐ
Number of variables, n = 5 
Number of fundamental dimension, m = 3, i.e., [ܯ], [L], [T]. 
Number of dimensionless group = n-m = 5-3 = 2 
Dimension of P(r, t) = [L] 
Dimension of A  = [L] 
Dimension of ݂  = [T-1] 
Dimension of t  = [T]  
Dimension of φ  = [arcT] 
The recurring sets of variable that are chosen are ݂ܣଶand φt. Such that: 
 ଶt2݂ܣ = ଶ = [LT-2] ;  therefore [L]݂ܣ
φt = [TarcT];   therefore [T] = t 
P(r, t) has a dimension of [L], therefore, P(r, t) [L-1] is dimensionless. Hence, 

π1 = 
,ݎ)ܲ (ݐ

ଶ tଶ൘݂ܣ  

π2 = t 
Thus, F (π1, π2) = 0 Model graph of π1 against π2 gives a generalization of the expected behavior of the design. If an engineer intends 
to make an actual design, all he needs to do is to incorporate the true value of the variables, A, ݂ and t (for the desired machine), for 
all those chosen values of A, ݂ and t, what the engineer gets is a graph of maximum amplitude ܲ(ݎ,   .against time t (ݐ

B. Conception And Programming 
The programming language employed in modeling of the neural design is C codes, these codes are used to program Motorola 
microcontroller unit, with a 32-bits display screen .These are indicated in appendix ……..There is an interfacing port on the design 
to which a personal computer can be connected in order to have a detailed picture of the waveforms, the microcontroller has been 
coded to recognize the interfacing hardware. The neural has been trained and programmed to detect the fault line, this has been 
achieved in this research by drawing a line along the various distorted amplitude of the wavelets.  

V. RESULTS DISCUSSION AND DATA ANALYSIS 
TABLE 1:    SIMULATED WAVELET I 

t/ms A/m F/Hz φ/rad P (r, t)/m 

3.0 28.3 21 0.39 20 

6.0 63.8 18 0.33 34 

9.0 58.4 15 0.28 25 
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12.0 40.0 14 0.26 10 

15.0 12.2 11 0.20 4 

18.0 7.5 21 0.39 -7 

21.0 11.0 18 0.33 -10 

24.0 2.0 18 0.33 -2 

27.0 7.5 30 0.55 6 

30.0 7.0 31 0.57 7 

From the table above, the parameters used in describing the seismic wave can be analyzed below to reflect the modeling steps: 
Time, t (ms): this refers to the time of arrival of seismic waves at receiving equipment called geophone (a device regarded as an 
analog-to-digital converter). This has been preset to have a value of 3ms in this artificial neural network model. The travel time(t) 
may or may not have a constant interval as shown in the table above since travel times or arrival times of the seismic waves at 
geophones depends on specific attributes of sub-surfaces at which reflections occur. 
Amplitude, A (m): this refers to the maximum displacement on seismic wave fronts. This has varying magnitudes at different times 
of travel due to the variation in the properties of layers in which they propagate. Maximum amplitude of 58.4m is observed at 9ms. 
It is expected that a peak will be seen at time of value 9ms.  
Frequency, F (Hz): This is defined as the number of complete cycles seismic waves make in one second. These are randomly 
selected from computer generated numbers  for this work. A maximum frequency of 31Hz is observed at time 30ms. The values of 
frequencies selected are used to calculate magnitudes of wavelengths (λ) and phases (φ) with the aid of the following equations: 

V = F λ                                                               (8) 

 Φ =ଶП
஛
 (9)                                                              ݔ

Phase, (φ): this refers to the offset of a seismic wavelet from a point o measured in radian (abbreviated as rad). It is given by 
equation 9 .Each value of phase is obtained by substituting the respective wavelengths into equation 9. For wavelet I, the phases of 
particles on the seismic wave are in the range 0.20≤ φ ≤ 0.57. represented by positive and negative numbers on the 5th column in 
Table 1. Actually, these are not supposed to be negative but the negative sign shows that the particles on the seismic wavelet I at 
these points are moving in the opposite directions with respect to those having positive displacements.    

Table 2: Simulated Wavelet Ii 
t/ms A/m F/Hz φ/rad P (r, t)/m 
3.0 21.4 10 0.18 20 
6.0 41.3 18 0.38 22 
9.0 32.7 15 0.28 14 
12.0 18.9 15 0.28 3 
15.0 38.0 13 0.24 4 
18.0 17.2 20 0.37 -15 
21.0 16.0 21 0.39 -16 
24.0 14.0 14 0.26 -10 
27.0 0.0 8 0.15 0 
30.0 3.0 30 0.56 3 

Table 2 gives the values of parameters of wavelet II. These parameters are identical to those in Table 1 but with different 
magnitudes. The arrival time (t) is the same as well as the velocity. It is evident from the table above that maximum amplitude of 
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41.3m is observed at 6ms, the frequencies are similarly computer generated and the phase is in the range 0.15 ≤ φ ≤ 0.56. Maximum 
displacement of 22m is evident at the same 6ms arrival time that is characterized by a peak on the waveform below.  

Table 3: Simulated Wavelet Iii 
t/ms A/m F/Hz φ/rad P (r, t)/m 
3.0 168.0 47 0.87 -31 
6.0 0.0 45 0.83 0 
9.0 36.2 18 0.33 8 
12.0 2.0 23 0.42 -1 
15.0 11.0 28 0.52 -11 
18.0 27.0 30 0.55 -19 
21.0 23.0 25 0.46 -19 
24.0 18.0 22 0.41 -15 
27.0 10.0 21 0.39 -7 
30.0 2.6 36 0.67 1 

 
Figure 4: The model displacement from the simulated wavelets. 

There are indications that within offset 6ms in the horizon have distorted amplitude repeatedly for the three wavelets, which is 
mapped out in the model to be fault line. This means within the horizon fault (f) has been detected which is a major hydrocarbon 
indicator that can be interpreted using 3D tools. The second horizon shows a synclinal structure which is an indication of the 
existence of a fault line ( ଶ݂) in the lower bed of the horizon. These two lines can be interpreted to be hydrocarbon container within 
this region as a closure which is a structural trap. 
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Structural traps are formed as a result of changes in the structure of the subsurface due to processes such a folding and faulting, 
leading to the formation of domes, anticlines, synclines, and folds. Examples of this kind of trap are an anticline trap. They are more 
easily delineated and more prospective than their stratigraphic counterparts, with the majority of the world’s petroleum reserves 
being found in structural traps. 

Fault Trap 
   

 

 

 

 

 

Fold Trap 

Figure 5: Monitoring and Detection of Fault 

VI. CONCLUSION 
Faults are lines of discontinuity which show an indication of an obstacle or a buried material. Faults can also be classified as traps. 
Since fault acts as petroleum traps and flow barriers, their identification and mapping is an important aspect of seismic 
interpretation.   Supervised learning algorithm has been employed in the artificial neural network model which makes fault lines to 
be drawn across points of significantly prominent amplitude regarded as discontinuities. This forms an important section in this 
research because it is the main motive of this work (i.e fault mapping in 3-D seismic sections). Geostatistical distribution of 
porosity, permeability, thickness, texture, lithology and shale volume fraction of reservoir rocks are pertinent to fault detection by 
the designed artificial neural network model. Prior to fault detection is monitoring of displacement magnitudes on the seismic 
wavelets. The neural network trained in this project has detected two major faults within the horizons F1 and F2. From the fore-
going analysis it can be concluded that Neural network is an effective tool for detecting and mapping geological features in 3-D 
seismic analysis. Also, to effectively map fault and other geological features like syncline, anticline, etc a neural network need to be 
trained to perform such a task. Hence, the artificial neural network generates output functions by observing clusters of changes in 
the input patterns.   
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