Delay, Power performance of 8-Bit ALU Using Carry Look-Ahead Adder with High \(V_t \) Cell

Bhukya Shankar\(^1\), E Chandra Sekhar\(^2\)
\(^1\)Assistant Professor, CVR College of Engg, ECE Dept, Hyderabad, India
\(^2\)Asst. Prof., CBIT, ECE Dept, Hyderabad, India

Abstract: A Low power 8-bit Arithmetic Logic unit (ALU) using a Carry look-ahead adder (CLA) and placing High \(V_t \) (HV\(_t\)) cells in Critical path is anticipated. The ALU is designed in 45nm CMOS technology. ALU is a most essential circuit in any processor. It consists of AE, LE, CLA and CE. This ALU is designed to calculate Arithmetic and Logical operations. Power and Delay values of different 8-bit adders like CLA, Sparse and Ripple-carry adder (RCA) are designed and compared. The simulation results show that the design of ALU using CLA and implementing High \(V_t \) and Standard \(V_t \) cells in the CLA gives more power and delay efficient than with only Standard threshold voltage cells.

Index Terms: Arithmetic Extender, Logic Extender, Carry Extender, Carry Look-ahead Adder

I. INTRODUCTION

ALU is the major power hungry block in any microprocessor and micro controller. It performs both arithmetic and logical operations. Conventional ALU consists of Arithmetic Extender, Logical Extender, Carry Extender and Ripple carry adder. An Adder is an integral part of the ALU and it is a power density block in ALU. Hence, to improve the performance of ALU in terms of Power, delay High \(V_t \) Concept is introduced. Before knowing about High \(V_t \) cells one should know about types of transistors.

A. Low \(V_t \) transistor (LV\(_t\))

The low \(V_t \) transistor type is used for applications where the speed is of primary importance. The disadvantage of this type of transistors is that, due to low threshold Voltage (\(V_t \)), the static power is very high.

B. Standard \(V_t \) Transistors (SV\(_t\))

The standard \(V_{th} \) transistor type is used when delay and static power has been traded off.

C. High \(V_t \) Transistor (HV\(_t\))

The High \(V_t \) transistor is a favor for extremely low static power consumption. So for educating power and delay High \(V_t \) cells are used in entire ALU and in critical path Standard \(V_t \) transistors are used. The reference [5] and [6] explains about the design of a full adder using PTL and Gate diffusion technique in ALU. Here we have designed an eight bit ALU with three select lines for performing eight operations. In these eight operations, four operations are executed for logical and four operations are executed for arithmetic operations. The design includes four basic blocks: They are CLA, Logic Extender (LE), Arithmetic Extender (AE), and Carry Extender (CE). The function of LE is to operate logic operations, AE is to operate arithmetic operations, CE is for carry operations and CLA is for actual arithmetic operations.

II. CONVENTIONAL ALU

The Arithmetic logic unit (ALU) is the furthermore significant block in microprocessor [1]. This one is used on behalf of executing arithmetic and logic operations alike addition, Subtraction, Logical OR and Logical AND. In the Conventional ALU Ripple carry adder (RCA) is used, and the delay and power values are more. So, instead of the RCA, we have selected Carry look-ahead adder. Since, ALU requires high speed and Low power. The overall circuit for 4-bit ALU is shown in figure1 [2]. There are two different Combinational circuits in front of CLA are LE and AE.
From the functional table of ALU shows that the selection input S2 is the main important parameter for selecting Arithmetic operations and Logical operations. When the selection line S2 is ‘0’ then Arithmetic operations are performed and when S2 is ‘1’ then Logical operations are performed. S0 and S1 are going to select any one of the operations.

Table 1: ALU Function Table

<table>
<thead>
<tr>
<th>S2</th>
<th>S1</th>
<th>S0</th>
<th>Operation Name</th>
<th>Operation in Output</th>
<th>X(LE)</th>
<th>Y(LE)</th>
<th>CO(CE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Pass</td>
<td>Pass A to output</td>
<td>A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>AND</td>
<td>A AND B</td>
<td>A AND B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>OR</td>
<td>A OR B</td>
<td>A OR B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>NOT</td>
<td>A'</td>
<td>A'</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Addition</td>
<td>A + B</td>
<td>A</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Subtraction</td>
<td>A - B</td>
<td>A</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Increment</td>
<td>A + 1</td>
<td>A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Decrement</td>
<td>A - 1</td>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: Truth Table for LE
In LE and AE blocks all types of Logical and Arithmetic operations will be carried out. The operands a_i and b_i are inputs to LE and AE. The LE performs the operation based on selection lines (S0, S1, and S2) and inputs a_i and b_i. The schematic diagram and truth table of LE is shown in figure.2 and table.2.

Table 3: The Truth Table of AE

<table>
<thead>
<tr>
<th>S2</th>
<th>S1</th>
<th>S0</th>
<th>b_i</th>
<th>Y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig: 3 Schematic of AE
But AE performs the operation based on selection lines and secondary input b_i. It doesn’t depend upon the primary input a_i. The schematic diagram and truth table of AE is shown in figure 3 and table 3. The Carry Extender is another important block in ALU. It depends on selection lines and gives the output of CE to CLA. The schematic diagram and truth table of CE is shown in figure 4 and table 4.

Now the simulation outputs of LE and AE are x_i and y_i, respectively. These x_i and y_i acts as inputs to the CLA and gives the simulation outputs as sum and carry.

III. DESIGN OF CLA

In ripple carry adder each carry-in signal is reliant on the carry out signal from the preceding full adder. The full-adder delay is very extreme. But the carry look-ahead adder [1] doesn’t depend on the previous carryout signal. We can find out equations for Carry look-ahead adder from full adder equation [1] is

$$
C_{i+1} = x_i y_i + c_i (x_i + y_i)
$$

From the above equation let

Then equation- (1) can be written as

$$
C_{i+1} = g_i + c_{gi}
$$

Using equation- (2) we can expand for designing 4-bit Carry look ahead adder.

For getting C_1 Substitute $i=0$ in the equation -- (2)

$$
C_2 = g_0 + c_{g0}
$$

For C_2 substitute $i=1$ in the equation -- (2)

$$
C_3 = g_1 + c_{g1}
$$

But we know C_1, so substitute equation-(3) in the equation -(4)

Then

$$
C_2 = g_0 + p_2 g_0
$$

For getting C_3 Substitute $i=2$ in the equation -- (2)

$$
C_3 = g_2 + . And we know C_2 Hence, Substitute C_2 in the equation -- (6)
$$

$$
C_3 = g_2 + p_2 g_2 + p_2 g_2 + p_2 g_2 + p_2 g_2 - (7)
$$

For getting C_4 Substitute $i=3$ in the equation -- (2)

$$
C_4 = g_3 + . But we know C_3 Hence, Substitute equation -- (7) in the equation -- (8)
$$

$$
C_4 = g_3 + p_2 g_3 - (9)
$$
Using the overhead carry equations, we can get the circuit for producing the carry look ahead adder signals from C_1 to C_4. The outputs of two input xor gates are sums of CLA. The four bit CLA is shown in Figure.5.

![Fig: 5 Schematic of 4-bit CLA](image)

IV. PROPOSED CLA

In this paper three 8-bit Ripple carry adder (RCA), sparse adder and Carry look ahead adder are designed and calculated the power and delay values. Table- V shows that CLA gives best power and delay values than the other two adders. The aim of the paper is to reduce the power and delay of the ALU. So we have chosen CLA instead of RCA. Since, CLA is a key block of ALU so in order to reduce power and delay, we have proposed a new 4-bit CLA using the High V_t cell concept. As we know in present technology, we have different types of MOS transistors. Those are Low V_t cells, High V_t cells and Standard V_t cells etc. The concept of High V_t cells is explained here.

A. **High V_t Cell concept**

The region just below V_t of a transistor is called the sub-threshold region [4]. After the gate to source voltage V_{gs} is less than threshold Voltage V_t, then the leakage current

\[I_{leakage} = \mu \frac{W}{L} e^{-(qV_t)/kT} \]

Where μ = mobility

W = width of MOSFET

L = Length of MOSFET

K = Boltzmann’s constant

T = Temperature

q = Charge of an electron

V_t = Threshold Voltage

η=Sub-threshold switching Coefficient

This indicates that the parameters μ, K, q are constants and only V_t and W are dependent on $I_{leakage}$. As the width of MOSFET rises leakage current also rises and as V_t increases, the leakage current decreases exponentially. This in turn lessens leakage power. So in this circuit all blocks of the Carry Look-ahead adder is designed and PMOS transistors are replaced with High V_t (HVt) cells. So the MOSFETs will be operated at their threshold voltage. Because of this delay increases and power dissipation is reduced greatly.
This justifies the usage of high V_t devices for low power applications in our design. In this paper, we want to reduce power and delay. So the combination of these cells will give better performance than using the Standard V_t cells. In this topic we explained how we have reduced the delay and power using Standard V_t cells and High V_t cells. Hence, in this 4-bit CLA, finding the critical path is the quiet important. Before saying about the critical path one should know about the critical path.

B. Critical path
The longest delay path between inputs to output. Here, the proposed 4-bit CLA the critical path is shown in Figure.6. It is $C_{in} \rightarrow$ Four AND gates \rightarrow OR gate. So to reduce delay the critical path blocks are designed with standard V_t cells to reduce delay. Next, to reduce power all remaining blocks are designed with High V_t cells.

C. Design of 8-bit CLA
The proposed 8-bit CLA is designed with cascading two 4-bit CLA as shown in figure.7. The Carry out waveform of first CLA is connected to the C_{in} of next CLA as shown in figure.7. The output waveform of the 8-bit CLA is shown in Figure.8 and Figure.9.
The proposed 8-bit ALU is shown in Figure 10. It has three selection lines, two 8-bit inputs $a_{7:0}, b_{7:0}$ and outputs $\text{Sum}_{7:0}$ and Carry. The internal blocks are Logical Extender, Arithmetic Extender and Carry Extender respectively. The simulation waveform of 8-bit ALU is shown in figure 11.
Figure 11. Simulation waveform of ALU

V. SIMULATION RESULTS

Table –V: - Comparison table of Adders

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Power(µW)</th>
<th>Delay(pS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ripple Carry adder</td>
<td>24.22</td>
<td>64800</td>
</tr>
<tr>
<td>Sparse adder</td>
<td>34.97</td>
<td>62400</td>
</tr>
<tr>
<td>Carry Look- ahead adder</td>
<td>22.92</td>
<td>81.7</td>
</tr>
</tbody>
</table>

Table –V shows the Power and Delay values of the Ripple Carry adder, Sparse adder and Carry look-ahead adder. In the above mention adders Carry Look ahead adder gives Low power and delay.

Table –VI: -The Performance of Carry look-ahead Adder

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Power(µW)</th>
<th>Delay(pS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using StandardVt Cells</td>
<td>5.619</td>
<td>89.13</td>
</tr>
<tr>
<td>Using High Vt Cells</td>
<td>3.81</td>
<td>136.9</td>
</tr>
<tr>
<td>Applying StandardVt cells in Critical Path</td>
<td>3.92</td>
<td>102.2</td>
</tr>
</tbody>
</table>

Table –VI shows that the performance of CLA using Standard cells, using High Vt cells and after Applying Standard Vt cells in the Critical path. The average power dissipation of the Carry look-ahead adder (CLA) is 5.61µW. After applying High Vt cells in all P-MOSFETs power consumption was reduced to 3.81 µW and delay was increased to 136.9pS. I.e. 47% of power consumption was reduced and 53% of delay was increased. In this ALU design delay is also an important parameter. So, further reducing the delay, critical path was identified and placed all the cells in the critical path to StandardVt cells. Then 2.8% of power consumption increased and 33.9% of delay was reduced. Hence, this high performance of CLA is used in the ALU.

Table –VII: - Performance of 8 bit ALU

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Power(µW)</th>
<th>Delay(pS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8bit ALU using StandardVt Cells</td>
<td>50.8</td>
<td>246.3</td>
</tr>
<tr>
<td>8bit ALU using High Vt cells in CLA</td>
<td>44.32</td>
<td>296.24</td>
</tr>
<tr>
<td>8bit ALU Applying StandardVt in Critical Path of CLA</td>
<td>43.58</td>
<td>258.5</td>
</tr>
</tbody>
</table>
Table VII shows the performance of 8 bit ALU when it is designed with Standard Vt cells, High Vt cells and after applying Standard Vt cells in the Critical path of CLA. The average power consumption and delay of ALU is 50.8 µW and 246.3pS respectively. After applying HVt cells in CLA 14.6% of average power consumption was reduced and 20% of delay was increased. So to further reducing the power and delay Standard Vt cells are placed in Critical path of CLA. Then 1.69% of power consumption was reduced and 14.5% of delay was reduced. This shows the best performance of power and delay of 8-bit ALU.

VI. CONCLUSION

The main goal of this paper is to reduce power and delay. The key element in the 8-bit ALU is the 8-bit Carry look-ahead adder. So to reduce power High Vt Cells are used in the P-MOSFET’s of Logic gates, and to reduce delay standard Vt Cells are used in logic gates of critical path. After applying the High Vt Cell concept in CLA, power reduction in ALU was 14.6%, and the delay reduction was 14.5% after placing standard Vt cells in the Critical path of CLA. This 8-bit ALU can be designed for other than these eight operations. This ALU can be extended to 16-bit also. This 8-bit ALU is can operate all Arithmetic and Logical operations. The total 8-bit ALU is designed in 45nm CMOS technology using Cadence tools.

REFERENCES
