Behaviour of Cold-Formed Z Purlins with Sag-Rods in Pre-Engineered Buildings

Kanchan S Takale¹, Prof. R. V. R. K Prasad², Dr. Ramesh V. Meghrajani³
¹Mtech Student, Civil Engg. Dept., KDKCE, Nagpur
²Asso. Professor, Civil Engg. Dept., KDKCE, Nagpur,
³Principal Consultant, NEO Infrastructure Consultants, Nagpur

Abstract: Zee profile has a complex deformation behaviour and the severe buckling issues leads to reduction in strength of the member. Lateral torsional buckling is the governing deformation leading to overall distortion of the member. It is important to eliminate or delay these buckling problems to achieve higher sustainability of the structure. Use of Sag-rods is a common practice adopted to curb this lateral torsional buckling and to reduce the unbraced length of the member. In this paper the deformed shape of the Zee profile is thoroughly observed. While analysing, both the flange widths are kept unbraced since a standard practice of providing 300mm spacing in roofing connection along the length of the purlin is not genuinely practiced everywhere. The influence of one and two sag rods on the deformed shape of Zee profile is observed. The focus was set on the longitudinal deformations of the member with regards to the distribution of deformations along the length of the member. A comparative study of the same is presented in this paper.

Keywords: BM (Bending moment), TD (Total deformation), XD (X-directional deformation), YD (Y-directional deformation), ZD (Z-directional deformation).

I. INTRODUCTION
The use of cold-formed steel structures is very popular around the world for its faster and standard manufacturing and construction techniques offering economy. However, the behaviour of these thin gauged members is characterised by a range of buckling modes such as local buckling, lateral torsional buckling and distortional buckling specially in case of roof framing members, viz., purlins. Zee profile is the most recommended section for purlins due to its special characteristic of overlapping and nesting into each other forming an intact system of roof bracings. But, Zee profile has a complex deformation behaviour and the severe buckling issues leads to reduction in strength of the member. Lateral torsional buckling is the governing deformation leading to overall distortion of the member. Therefore, it is important to eliminate or delay these buckling problems to achieve higher sustainability of the structure.

II. GEOMETRICAL CONFIGURATIONS AND GENERAL ARRANGEMENTS

![Fig. 1 Representation of Zee profile on global axis of ANSYS](image-url)
The study from boundary conditions revealed that the practical condition of constraining four cleat holes is the best suit for the definition of the problem. The exact boundary condition under which the Zee profile will be simulated is Pin-Pin with 1 additional constraint at each end. The ideal loading condition was found to be SETUP B under which a force in KN is applied on the entire top flange of the Zee Profile.

As the length of the member increases, the deflection increases. However, the maximum total deformations are found to be least for Z5(250*70*22*250) of all members. But this being a heaviest section of all available sections, is avoided under normal condition. Under huge wind pressure, like coastal areas prone to cyclones and mountainous terrain, use of section Z5 is recommended if no other member fits in. For section Z1(200*60*20*15), which is a typical section, the deformations are observed to fall from 5.5 m of length to 6.5 m of length. The use of section is recommended to be used under all normal conditions for the best suited length range of 5.5 m to 7.5 m.

The comparison of Zee profile with and without lip element showed that Zee profiles with lip elements have higher strengths as the deformations observed under identical loading conditions are less of Zee profile with lip elements compared to Zee profiles without lip element. The Zee profile with lip element at 30° experiences the minimum deformations. In practice, the Zee profile with 45° is used. A comparison of Zee profile with 30° and 45° lip angle was made. The Zee profile with 30° lip angle is found to be more stable in regards of the deformations. Suitability of a 30° lip element while overlapping may be further studied to justify why the 45° lip angle Zee Profiles. Also, the load carrying capacities of the two may be compared. For further simulations, Zee profile with 45° lip angle is considered. However, a range of 30°-60° lip angle Zee Profiles is acceptable.
The portrayal of deformed shape of Zee profile give the deformed shape of Zee profile at a cross-section cut at the midspan length of the member. (4m). The entire cross-section is housed in 17 points. Point 1-2-3 (16.09-12.99-11.10) mm house for lower lip, point 3-4-5-6-7 (11.10-6.77-15.44-16.14-16.19) mm houses for bottom flange, point 7-8-9-10-11 (16.19-22.09-39.99-60.21-81.20) mm house for web, point 11-12-13-14-15 (81.20-82.72-83.60-86.94-91.79) mm house for top flange and points 15-16-17 (91.79-90.34-89.14) mm houses for upper lip.

III. STUDY DEFORMED SHAPE OF ZEE PROFILE WITHOUT SAG RODS

Fig. 4 Geometrical configuration of Zee profile without Sag-rods

To study the deformations at various cross-sections of the Zee profile, six sections have been considered viz., C/S @ 0-0, C/S @ CC (Connection Centre), C/S @ 1M, C/S @ 2M, C/S @ 3M and C/S @ 4M along the length of the member starting from end 1. From Fig. 5, it is observed that the maximum deformation occurs at midspan at the outer edge of top flange. Local buckling can be observed in both the unbraced flanges. The, web however presents a straight line. Studies suggests that under lateral torsional buckling the cross-sectional elements may show a rigid behaviour. In Fig. 5, the appeared behaviour in the web is rigid like. It is possible for the web element to behave as a rigid body under lateral torsional buckling, which in the above example exist. To ensure the result, a study of deformed shape of only web element is performed.
From Fig. 6, local buckling is observed in the web at C/S @ 0-0 where point 1 is pinned vertex. The maximum total deformation is observed at point 2. It must be noted that, local buckling is observed at the point 1 where the pinned vertex as the name suggests, is restricted to lateral displacements in all directions. From Fig. 5, the rigid cross-sectional behaviour of the web is observed at all the sections subjected lateral torsional displacements. The section WEB @ 0-0 and WEB @ CC has been discussed above. A comparison of web cross-section is done at End 1 and End 2. The behaviour is similar, local buckling is observed. The slight variation in the curvature is the effect of variation in directional deformations (Z-directional deformations causing torsional effect longitudinally).
IV. STUDY DEFORMED SHAPE OF ZEE PROFILE WITH SAG RODS

Fig. 7 Geometrical configuration of Zee profile with sag-rods

1) With one sag rod, the maximum deformation of the member is reduced from 99.917mm to 39.127mm. The maximum total deformation is on the end points with two one rods.

2) Twisting behaviour of the member is observed.

3) Uneven distribution of deformations along length.

Fig. 8 Longitudinal total deformations of centroidal axis and top flange of Zee profile with 1-SR and 2-SR

1) With one sag rod, the maximum deformation of the member is reduced from 99.917mm to 39.127mm. The maximum total deformation is on the end points with two one rods.

2) Twisting behaviour of the member is observed.

3) Uneven distribution of deformations along length.
Fig. 9 Twist formed at the ends of the Zee profile showing maximum total deformation

4) With two sag rods, the maximum deformation of the member is reduced from 99.917mm (with no sag rod) and 39.127mm (with two sag rods) to 23.00mm. The maximum total deformation is on the end points with two sag rods.

5) Twisting behaviour of the member is observed.

6) Even distribution of deformations along length.

7) Maximum deformations on the end points can be taken care of by overlapped section

The comparative study is performed on Zee section profile Z1(200*60*20*15) of 8 metres length. It is observed that the maximum deformation of Zee profile with one sag rod is at the end points and not on the midspan. That would generate a negative bending moment at the support. This negative bending moment is the peak value of BM in the member. At this junction, the effect of this comparatively huge BM can be reduced with overlap. An overlap at the junction will impart the benefit of doubled cross-sectional area and correspondingly doubled strength.

V. CONCLUSIONS

| TABLE III Influence of sag-rods on deformations of Zee profiles |
|---------------------------------|-------|-------|-------|
| PARAMETER | 0-SR | 1-SR | 2-SR |
| Total Deformation | 0.006 | 0.090 | 0.006 |
| C/S @ 0-0 | 2.213 | 37.871| 23.005|
| C/S @ CC | 0.132 | 0.492 | 0.362 |
| C/S @ 4M | 3.202 | 37.459| 22.487|
| Centroidal | 0.561 | 0.185 | 0.114 |
| Top Flange Outer Edge | 1.686 | 0.752 | 0.615 |
| Stress | 0.639 | 0.777 | 0.292 |
| Strain | 364.750 | 271.180 | 166.940 |
| Strain | 0.00005 | 0.00001 | 0.00001 |

©IJRASET: All Rights are Reserved
From TABLE III, it is observed that use of sag-rods not only reduces the total deformations in the Zee profile but also reduces the stresses generated in the member. Use of sag-rods cannot completely eliminate the deformations of slender sections such as Zee sections. But, it can considerably reduce the deformations to the limiting value as prescribed in the codes.

VI. ACKNOWLEDGMENT

With profound feeling of immense gratitude and affection, the author would like to thank Guide Prof. R.V.R.K. Prasad and Co-Guide Dr. Ramesh V. Meghrajani for their enthusiasm, expertise guidance and encouragement throughout this study. Their supervision with constructive criticism and confidence enabled author to complete this project. The author puts forth deepest sense of gratitude towards Prof. Dr. R. N. Khapre, Shri Ramdeobaba College of Engineering, Nagpur for his guidance in ANSYS simulations.

REFERENCES

[8] AISI/AISC 360-16 (Specification for Structural Steel Buildings
[10] Dr. N Subramanian “Steel Structures – Design and Practice”
[12] Lei Zhang, Gen-Shu Tong “Lateral bucking of simply supported C-and Z-section purlins with top flange horizontally restrained”, Thin-Walled Structures, 2015