Colouring of Generalized Petersen Graph of Typek

B. Stephen John ${ }^{1}$ J. C. Jessy ${ }^{2}$
${ }^{1}$ Associate Professor and ${ }^{2}$ Research Scholar Department of Mathematics, Annai Velankanni College, Tholayavattam, Tamilnadu. India-629157

Abstract

Let $G=\{V, E\}$ be a connected simple graph. A vertex colouring of a graph G is a function $f: V(G) \rightarrow C$, where C is a set of distinct colours. The vertex colouring problem is one of the fundamental problem on graphs which often appears in various scheduling problems like the file transfer problem on computer networks. In this paper we determine the vertex colouring of generalized petersen graph of type k.

Keywords: Cycle, Chromatic number, Vertex colouring, Generalized Petersen graph.

I. INTRODUCTION

The theory of graph colouring has existed for more than 150 years from its modest beginning of determining whether a geographic map can be coloured with four colours. The theory has become central in discrete mathematics with many contemporary generalization and application. In this paper, we are concerned with finite, connected, simple graph. Let
$G=\{V(G), E(G)\}$ be a graph, if there is an edge e joining any two vertices u and v of G, we say that u and v are adjacent. A k vertex colouring C of a graph G is an assignment of k-colours to the vertices of G.

A. Definition:1.1

A graph G is an ordered pair $(V(G), E(G))$ consisting of a non-empty set $V(G)$ of vertices and a set $E(G)$, disjoint from $V(G)$ of edges together with an incidence function ψ_{G} that associates with each edge of G is an unordered pair of vertices of G.

B. Definition: 1.2

A colouring of a simple connected graph G is colouring the vertices of G in such a way that no two adjacent vertices of G get the same colour. A graph is properly coloured if it is coloured with the minimum possible number of colours.

C. Definition: 1.3

The chromatic number of a graph G is the minimum number of colours required to colouring the vertices of G in properly and is denoted by $\chi(G)$.

D. Definition: 1.4

The generalized petersen graph $G P(n, k)$ has vertices and edges of the form $V(G P(n, k))=\left\{a_{i}, b_{i} / 0 \leq i \leq n-1\right\}$, $E(G P(n, k))=\left\{a_{i} a_{i+1}, a_{i} b_{i}, b_{i} b_{i+k} / 0 \leq i \leq n-1\right\}$.
E. Definition: 1.5

Walk is an alternating sequence of vertices and edges starting and ending with vertices. A walk in which all the vertices are distinct is called a path. A path containing n-vertices is denoted by P_{n}. A closed path is called cycle. A cycle containing n-vertices is denoted by C_{n}, the length of a cycle is the number of edges occurring on it.
Let $G=G P(n, k)$ be the generalized petersen graph.
Let $\mathrm{V}(\mathrm{G})$ be the vertex set of $G=G P(n, k)$. It can be partitioned into two sets V_{1} and V_{2} such that

$$
\begin{array}{ll}
\text { i. } & V_{1}(G)=\left\{v_{i} / i=1,2, \ldots, n\right\} \\
\text { ii. } & V_{2}(G)=\left\{u_{i} / i=1,2, \ldots, n\right\}
\end{array}
$$

Clearly, the vertices of $V_{i ;\{i=1,2\}}$ satisfies the condition $V_{1}(G) \cap V_{2}(G)=\emptyset$. Also, each vertex $v_{i} \epsilon V_{1}$ is adjacent to the corresponding $u_{i} \in V_{2}$.

The elements of $V_{1}(G)$ form a cycle of length n. Let it be C_{1}.

1) Type: I: If $\operatorname{gcd}(n, k)=k$ and $\frac{n}{k}$ is even, the vertex set of V_{2} contains k -disjoint cycles of length n / k. Let it be $\left\{C_{2_{1}}, C_{2_{2}}, \ldots, C_{2_{k}}\right\}$.

For example, $G P(12,3)$ is represented in figure:2.1

Figure:2.1
Clearly, the cycles C_{1} and $C_{2_{i} ;(i=1,2, \ldots, k)}$ are of even in length. By lemma: 1, We need 2-colours to colour all the vertices of V_{1}. Let it be c_{1} and c_{2}. Suppose the colour c_{1} is given to the vertex v_{1}. Since, each v_{i} is adjacent with the corresponding u_{i}, we can't assign the colour c_{1} to the vertex u_{1}. Hence, we can assign the cour c_{2} to the vertex u_{1}. Since the cycles $C_{2_{i} ;(i=1,2, \ldots k)}$ are even in length, repeat the above process for each u_{i} and from these above processes we can conclude that, in this type we need 2 -colours to colour all the vertices of G . Therefore, $\chi(G)=2$.
2) Type: II If $\operatorname{gcd}(n, k)=1$, the vertex set of V_{2} contains a cycle of length n. Let it be C_{2} For example, $G P(8,3)$ is represented in figure:2.2

Figure:2.2
Since, the cycle C_{1} is of even in length. By lemma:1, We need 2 -colours to colour all the vertices of C_{1}. Let it be c_{1} and c_{2}. Now, fix the colour c_{1} to the vertex v_{1}. BSince, each v_{i} is adjacent with the corresponding u_{i}, the vertices of C_{2} are coloured according to their adjacency with the vertices of the cycle C_{1}. Hence, we need 2-colours to colour all the vertices of G. Therefore, $\chi(G)=2$.
3) Theorem:2.2 Let G be the generalized petersen graph of type k , that is $G=G P(n, k)$, for all n and k are odd, then $\chi(G)=3$.
4) Proof: Let $G=G P(n, k)$ be the generalized petersen graph. Let $\mathrm{V}(\mathrm{G})$ be the vertex set of $G=G P(n, k)$. It can be partitioned into two sets V_{1} and V_{2} such that

$$
\begin{array}{ll}
\text { i. } & V_{1}(G)=\left\{v_{i} / i=1,2, \ldots, n\right\} \\
\text { ii. } & V_{2}(G)=\left\{u_{i} / i=1,2, \ldots, n\right\}
\end{array}
$$

Clearly, the vertices of $V_{i ;\{i=1,2\}}$ satisfies the condition $V_{1}(G) \cap V_{2}(G)=\emptyset$. Also, each vertex $v_{i} \epsilon V_{1}$ is adjacent to the corresponding $u_{i} \in V_{2}$. The elements of $V_{1}(G)$ form a cycle of length n . Let it be C_{1}.
5) Type: I: If $\operatorname{gcd}(n, k)=k$ and n / k is odd.

The vertex set of V_{2} contains k-disjoint cycles of length n / k. Let it be $\left\{C_{2_{1}}, C_{2_{2}}, \ldots, C_{2_{k}}\right\}$. For example, $G P(9,3)$ is represented in figure:2.3

Figure:2.3
Clearly, the cycles C_{1} and $C_{2_{i} ;(i=1,2, \ldots, k)}$ are of odd in length. Fix the vertex v_{1} and assign the colour c_{1} to the vertex v_{1}. Since the vertex v_{2} is adjacent to the vertex v_{1}, we need a new colour c_{2} to colour v_{2}. Also, the vertex v_{3} is independent with v_{1} and adjacent with v_{2}, so we can give the colour c_{1} to $v_{3} \in V_{1}$. Repeat the above process for each $v_{i} ;(i=1,2, \ldots, n-1)$. Since, the cycle C_{1} is of odd in length. The vertex v_{n} is adjacent to both the colours c_{1} and c_{2}, so we need another new colour c_{3} to colour the vertex v_{n}. Hence, we need 3 -colours to colour all the vertices of the cycle C_{1}. Now, to colour the vertices of V_{2}, assign the colours c_{1} and c_{2} to the vertices $u_{j ;(j=1,2, \ldots, k-1)} \in V_{2}$ according to its adjacency with the corresponding $v_{j} \in V_{1}$ Repeat the above process for each $u_{j+k} \in V_{2}$ by assigning the colours c_{1} and c_{2}. Also, the vertices $u_{n-k+j} \epsilon V_{2}$ are independent with the vertices which are coloured by the colour c_{3} and adjacent with the remaining two colours c_{1} and c_{2}. So, we can assign the colour c_{3} to the (u_{n-k+j})-vertices. Now, we can colour the remaining $\left(u_{j k}\right)$-vertices of the cycle $C_{2_{k}}$ by fixing the colour c_{1} to the vertex u_{n} and assigning the colours c_{1}, c_{2} and c_{3} to all other $\left(u_{j k}\right)$-vertices according to its adjacency with other vertices. Hence, we need 3 -colours to colour all the vertices of G . Therefore, $\chi(G)=3$.
6) Type: II If $\operatorname{gcd}(n, k)=1$. the vertex set V_{2} form a cycle C_{2} of odd length. Therefore, both the cycles $C_{2_{i} ;(i=1,2)}$ are of odd length For example, $G P(7,3)$ is represented in figure:2.4

Figure:2.4

Fix the vertex v_{1} and assign the colour c_{1} to the vertex v_{1}.
into two sets V_{1} and V_{2} such that $V_{1}(G)=\left\{v_{i} / i=1,2, \ldots, n\right\}$
$V_{2}(G)=\left\{u_{i} / i=1,2, \ldots, n\right\}$
Clearly, the vertices of $V_{i ;\{i=1,2\}}$ satisfies the condition $V_{1}(G) \cap V_{2}(G)=\emptyset$. Each vertex v_{i} is adjacent to the corresponding u_{i}.
The elements of $V_{1}(G)$ form a cycle of length n. Let it be C_{1}.
7) Type: I If $\operatorname{gcd}(n, k)=1$ For example, $G P(9,2)$ is represented in figure:2.5

Figure:2.5
Clearly, the vertex set V_{2} form a cycle C_{2} of odd length.
Hence, both the cycles $C_{2_{i} ;(i=1,2)}$ are of odd length.
Fix the ertex v_{1} and assign the colour c_{1} to the vertex v_{1}.
Since the vertex v_{2} is adjacent to the vertex v_{1}, we need a new colour c_{2} to colour v_{2}.
Also, the vertex v_{3} is independent with v_{1} and adjacent with v_{2}, so we can give the colour c_{1} to $v_{3} \in V_{1}$.
Repeat the above process for each $v_{i} ;(i=1,2, \ldots, n-1)$.
Since, the cycle C_{1} is of odd in length. The vertex v_{n} is adjacent to both the colours c_{1} and c_{2}, so we need another new colour c_{3} to colour the vertex v_{n}.
Hence, we need 3-colours to colour all the vertices of the cycle C_{1}.
Now, we can colour the vertices of the vertex set V_{2} by fixing the colour c_{2} to the vertex u_{n} and colour c_{1} to the vertex u_{k}.
The independent vertices $u_{k+1}, u_{k+2}, u_{n-1}$ and u_{n-2} are adjacent to the vertices which are coloured by the colours c_{1} and c_{2} and independent to the colour c_{3}. So, we can give the colour c_{3} to these four vertices. The remaining u_{j}-vertices are coloured by the colours c_{1} and c_{2} according to its adjacency withal the other vertices.
Hence, in this type we need 3-colours to colour all the vertices of G.Therefore, $\chi(G)=3$.
If $\operatorname{gcd}(n, k)=t$ and n / t is odd. The vertex set of V_{2} contains t-disjoint cycles of length n / t. Let it be $\left\{C_{2_{1}}, C_{2_{2}}, \ldots, C_{2_{t}}\right\}$.
For example, $G P(5,6)$ is represented in figure:2.6

Figure:2.6
Clearly, the cycles C_{1} and $C_{2_{i} ;(i=1,2, ., t)}$ are of odd in length.
Fix the vertex v_{1} and assign the colour c_{1} to the vertex v_{1}.
Since the vertex v_{2} is adjacent to the vertex v_{1}, we need a new colour c_{2} to colour v_{2}.
Also, the vertex v_{3} is independent with v_{1} and adjacent with v_{2}, so we can give the colour c_{1} to $v_{3} \in V_{1}$.
Repeat the above process for each $v_{i ;(i=1,2, ., n-1)}$. Since, the cycle C_{1} is of odd in length. The vertex v_{n} is adjacent to both the colours c_{1} and c_{2}, so we need another new colour c_{3} to colour the vertex v_{n}.
Hence, we need 3-colours to colour all the vertices of the cycle C_{1}.
Now, t colour the vertices of V_{2}, assign the colours c_{1} and c_{2} to the vertices $u_{j ;(j=1,2, . ., k-1)} \in V_{2}$ according to its adjacency with the corresponding $v_{j} \in V_{1}$.
Repeat the above process for each $u_{j+k} \epsilon V_{2}$ by assigning the colours c_{1} and c_{2}. Also, the vertices $u_{n-k+j} \epsilon V_{2}$ are independent with the vertices which are coloured by the colour c_{3} and adjacent with the remaining two colours c_{1} and c_{2}. So, we can assign the colour c_{3} to the (u_{n-k+j})-vertices.
Now, we can colour the remaining $\left(u_{j k}\right)$-vertices of the cycle $C_{2_{k}}$ by fixing the colour c_{1} to the vertex u_{n} and assigning the colours c_{1}, c_{2} and c_{3} to all other ($u_{j k}$)-vertices according to its adjacency with other vertices.
Hence, we need 3-colours to colour all the vertices of G.
Therefore, $\chi(G)=3$.
8) Theorem:2.4 Let G be the generalized petersen graph of type k, that is $G=G P(n, k)$, for all n and k are even, then $\chi(G)=3$.
9) Proof: Let $G=G P(n, k)$ be the generalized petersen graph.
(G) be the vertex set of $G=G P(n, k)$. It can be partitioned into two sets V_{1} and V_{2} such that

$$
\begin{array}{ll}
\text { i. } & V_{1}(G)=\left\{v_{i} / i=1,2, \ldots, n\right\} \\
\text { ii. } & V_{2}(G)=\left\{u_{i} / i=1,2, \ldots, n\right\}
\end{array}
$$

From (i) and (ii), the vertices of $V_{i ;\{i=1,2\}}$ satisfies the condition $V_{1}(G) \cap V_{2}(G)=\emptyset$.
The elements of $V_{1}(G)$ form a cycle of length n. Let it be C_{1}.
10) Type: I If $\operatorname{gcd}(n, k)=k$. For example, $\operatorname{GP}(8,2)$ is represented in figure:2.7

Figure:2.7
Since the cycle C_{1} is of even length.
By lema:1,
We need 2 -colours to colour all the vertices of C_{1}. Let it be c_{1} and c_{2}.
The vertices of V_{2} split into k-cycles. Let it be $\left\{C_{2_{1}}, C_{2_{2}}, \ldots, C_{2_{k}}\right\}$. Each cycle $C_{2_{i} ;(i=1,2, \ldots, k)}$ is of even in length.
The vertex $\left\{v_{i ;(i=1,2, \ldots, k)}\right\}$ is adjacent to the vertex $\left\{u_{i ;(i=1,2, \ldots, k)}\right\}$ which is coloured by the colour c_{1}. Therefore, we can assign the colour c_{2} to the vertex u_{i}.
But the vertices $\left\{u_{i+k ;(i=1,2, \ldots, k)}\right\}$ and $\left\{u_{n-k+i ;(i=1,2, \ldots, k)}\right\}$ are adjacent with the vertices which are coloured by the colours c_{1} and c_{2}. Hence, we need a new colour c_{3} to colours these two disjoint vertices.
Hence, we need 3-colours to colour all the vertices of this type.
Therefore, $\chi(G)=3$.
11) Type: II If $\operatorname{gcd}(n, k)=t$ and n / t is odd. For example, $G P(10,4)$ is represented in figure: 2.8

Figure:2.8
Since, the cycle C_{1} is of even in length.
By lemma:1,
We need 2 -colours to colour all the vertices of C_{1}. Let it be c_{1} and c_{2}.
The vertices of V_{2} split into t-cycles. Let it be $\left\{C_{2_{1}}, C_{2_{2}}, \ldots, C_{2_{t}}\right\}$. Each cycle $C_{2_{i} ;(i=1,2, \ldots, t)}$ are of odd in length. By lemma:1,

We need 3-colours to colour all the vertices $C_{2_{i} ;(i=1,2, \ldots, t)}$ according to there adjacency with the vertices of C_{1}.

Therefore, we need 3-colours to colour all the vertices of this type.
Hence, $\chi(G)=3$.
12) Type: IIIIf $\operatorname{gcd}(n, k)=t$ and n / t is even.For example, $G P(16,6)$ is represented in figure:2.9

Figure:2.9
Since, the cycle C_{1} is of even in length.
By lemma:1,
We need 2 -colours to colour all the vertices of C_{1}. Let it be c_{1} and c_{2}.
The vertices of V_{2} split into k-cycles. Let it be $\left\{C_{2_{1}}, C_{2_{2}}, \ldots, C_{2_{t}}\right\}$. Each cycle $C_{2_{i} ;(i=1,2, \ldots, t)}$ is of even in length.
The vertex $v_{i ;(i=1,2, ., t)}$ is adjacent to the vertex $u_{i ;(i=1,2, \ldots, t)}$ which is coloured by the colour c_{1}. Thererfore, we can assign the colour c_{2} to the vertex u_{i}.
But the vertices $u_{i+k ;(i=1,2 \ldots, t)}$ and $u_{n-k+i ;(i=1,2 \ldots, \ldots)}$ are adjacent with the vertices which are coloured by the colours c_{1} and c_{2}. Hence, we need a new colour c_{3} to colours these two disjoint vertices.
Hence, we need 3-colours to colour all the vertices of this type.
Therefore, $\chi(G)=3$. Hence proved.

REFERENCES

[1] Robento.W.Frucht, Jack.E.Graver and Mark.E.Watkins, "The groups of the generalized petersen graph", Proc. Cambridge Philas. Sec.,70(1971), 211-218.
[2] Halton.D.A and Sheehan.J, "Generalized Petersen and Permutation Graphs", Cambridge, England; Cambridge University Press, pp-45 and 315-317, 1998.
[3] Ponstein.J.(1969). A New Proof of Brooks', "Chromatic Number Theorem for Graphs", Journal of Combinatorial theory, 7, 255-257.
[4] Dantas.S, de Figueiredo.C.M.H, Maxzuoccoloc.G, Preissmann.M, dos Santos.V.F and Sasaki.D(2016) "On the Total Colouring of Generalized Petersen Graphs", Discrete Mathematics, 339, 1471-1475.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

