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Abstract: The design of ferritic steel welding alloys to match the ever desired properties of newly developed steels is not a simple 
task. It is traditionally achieved by experimental trial and error, modifying compositions and welding conditions until an 
adequate result is discovered.  Savings in economy and time might be achieved if the trial process could be minimised. The 
present work outlines the use of an artificial neural network to model the yield strengths of ferritic steel weld deposits from their 
chemical composition, welding conditions and heat treatments. The development of the General regression neural network 
(GRNN) models is described,  as is the confirmation of their metallurgical fundamentals and accuracy. 
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I. INTRODUCTION 
The tensile strength test provides the basic design data essential in both the specification and acceptance of welding materials.  
Although the measurements involved are simple, their values depend in a complicated way on the chemical composition,  the 
welding parameters and any heat treatment.    
There is no common fundamental or experimental model  capable of estimating the tensile parameters as a function of all these 
variables  [1,2]. 
 The difficulty is the complexity of the nonlinear relationship between input variables and yield strength.  The physical models for 
strengthening mechanisms are not sufficiently sophisticated [3]  and the linear regression methods used traditionally   are not 
representing the real behaviour which is far from linear when all the variables are taken into account. 
The aim of this work was to use GRNN to empirically model and interpret the dependence of the yield strength of steel weld 
deposits as a function of many input variables. 
General regression neural network is capable of realising a great variety of nonlinear relationships of considerable complexity. Data 
are presented to the  GRNN in the form of input and output parameters,.  As in regression analysis, the results then consist of  the 
regression coefficients and a specification of the kind of function which in combination with the weights relates the independent or 
input variables to the dependent or output variables. 
The design of a model using the GRNN method requires a large database of experimental measurements was assembled for neural 
network analysis of ferritic steel welds. 

II. MODELLING WORK 
Database for Modelling: All of the data collected are from weld deposits in which the joint is designed to minimize dilution from the 
base metal, to enable specifically the measurement of all`weld metal properties. Furthermore, they all represent electric arc welds 
made using one of the following processes: manual metal arc (MMAW), submerged arc welding (SAW) and tungsten inert gas 
(TIG). The welding process itself was represented only by the level of heat input. The data were collected from a large number of 
sources.( Table 1). 
The aim of the neural network analysis was to predict the Yield Strength as a function of a large number of variables, including the 
chemical composition, the welding heat input and any heat treatment. As a consequence, the yield strength database consists of 2121 
separate experiments with 17 input variables. 
In the present work, a neural network method is used as a Generalised Regression Neural Network[4]. All GRNN networks have 17 
inputs, 1061 neurons in the first hidden layer, 2 neurons in the second hidden layer and 1 neuron in the output layer. (Figure.1) 
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Figure 1. The architecture of Generalized Regression Neural Network 

The hundred and thousand of models were trained with this neural network method in statistica software. The training errors, 
Validation errors (or Selection errors) and testing errors of training dataset(1061), Validation data set(530) (or Selection dataset) and 
testing dataset(530) of Yield Strength were compared. The lowest errors models were selected because they are best for practical 
applications.  

Table 1 The 17 Input variables used in the analysis of the yield strength 
Variables Min Max Average StDev Variables Min Max Average StDev 
C wt% 0.01 0.22 0.0708 0.0216 Cu wt% 0 2.18 0.0659 0.2062 
Si wt% 0 1.63 0.3467 0.1262 Ti ppm 0 1000 78.6382 122.4481 
Mn wt% 0.23 2.31 1.1959 0.4175 B ppm 0 200 9.2504 27.9733 
S wt% 0.001 0.14 0.0081 0.0051 Nb ppm 0 1770 53.7704 145.3195 
P wt% 0.001 0.25 0.0108 0.0075 HI  kJ mm-1 0.55 7.9 1.3573 0.9931 
Ni wt% 0 10.66 0.5807 1.4971 IPT C 20 375 205.4668 42.7739 
Cr wt% 0 12.1 0.6243 1.5961 PWHTT C 20 780 328.1428 211.1714 
Mo wt% 0 2.4 0.2001 0.3591 PWHTt  h 0 50 9.4335 6.5893 
V wt% 0 0.32 0.0191 0.0507 YS MPa 210 1026 535.7139 119.8611 

III.  RESULTS AND DISCUSSION 
The normal behaviour of the Predicted Yield Strength and Observed Yield Strength are observed in the Figure. 2 for Training data, 
Validation data and Testing data. Training of the model is excellent by GRNN method. 

 
Figure  a  Training Data for GRNN model of Yield Strength 
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Fig  b  Validation Data for GRNN model of Yield Strength 

 
Fig c   Test Data for GRNN model of Yield Strength 

Figure  2 Training data, validation data and test data of the Best GRNN model for Yield Strength. 

 The best model of GRNN has training error 0.011404, validation error (selection error) 0.018101, and testing error 0.018669. This 
model is used for getting the results in form of various response graphs to understand the trend between the input variables and 
output variable(Yield Strength).(Figure 3) 

  
a Yield Strength(MPa) – Carbon(wt %) b Yield Strength(MPa) – Silicon(wt %) 
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c Yield Strength(MPa) – Manganese(wt %) d Yield Strength(MPa) – Sulphur(wt %) 

  

e Yield Strength(MPa) – Phosphorus(wt %) f  Yield Strength(MPa) – Nickel(wt %) 
 

  
g Yield Strength(MPa) – Chromium(wt %) h Yield Strength(MPa) – Molybdenum(wt %) 
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i Yield Strength(MPa) – Vanadium(wt %) j Yield Strength(MPa) – Copper(wt %) 

  
k Yield Strength(MPa) – Titanium(ppmw) l Yield Strength(MPa) – Boron(ppmw) 

 

  

m Yield Strength(MPa) – Niobium(ppmw) n Yield Strength(MPa) – Heat input (kJ mm-1) 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

                                                                                                        Volume 6 Issue VIII, August 2018- Available at www.ijraset.com 
     

©IJRASET: All Rights are Reserved 529 

  

o Yield Strength(MPa) – Interpass temperature  (C) p Yield Strength(MPa) – Post-weld heat treatment 
temperature (C) 

 
q Yield Strength(MPa) – Post-weld heat treatment time (h) 

Figure 3 Response graphs(a to q) of Input variables and Yield Strength of Ferritic Steel Welds 

The influence of each of the variables on the yield strength of welding alloys which is discussed here. The carbon increases the yield 
strength up to 522 MPa with 0.05% then drop to 477 MPa at 0.1%. After 0.15% C, yield strength increases to 536 MPa than 
decrease to 519 MPa at 0.2% C. In the case of silicon between 0.1% to 0.2%, there is a drop of the 440 MPa to 431 MPa in yield 
strength and then increases to 505 MPa at 0.45%. At 0.8%, yield strength is 515 MPa and decreases between 1.0% to 1.2% from 515 
MPa to 504 MPa. The trend of manganese shows the increase in the Mn% the value of the yield strength is also increased from 400 
MPa to 563 MPa.  At various points, 0.8%, 1.1%, 2.1% the decrease in yield strength is observed. The sulphur shows the first 
decrease in the yield strength from 490 MPa to 464 MPa. At slightly more than 0.09%,  it is increased from 464 MPa to 537 MPa. 
The Phosphorus gives the increase in yield strength from 485 MPa to 537 MPa. The nickel has the maximum yield strength of 629 
MPa at 7.8% and minimum 490 MPa at 1%. In figure. It shows at 4.9% the yield strength value drop to 528 MPa. More than 7.8 %i 
Ni gives a further drop in yield strength 539 MPa. The Chromium has a maximum yield strength of 740 MPa between 3% to 7%. 
More than 7% Cr reduces the yield strength to 539 MPa. Increase in the yield strength from 479 MPa to 740 MPa only by the 
gradual addition of chromium up to 3%. Molybdenum increases the yield strength from 490 MPa to 730 MPa at 1.98%. At 0.8% Mo 
gives yield strength 719 MPa. More than 1.98% Mo decreases yield strength from 730 MPa to 539 MPa.   Vanadium increases the 
yield strength from 492 MPa to 600 MPa at 0.15%. At 0.22% V, yield strength decreases to 538 MPa. Copper increases the yield 
strength from 490 MPa to 513 MPa at 0.6%. At 1.2% Cu, yield strength decreases to 488 MPa. Cu gives maximum yield strength of 
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570 MPa when it is more than 1.27%. Titanium gives a minimum yield strength of 457 MPa to maximum 553 MPa. At 700 ppm 
yield strength is the highest. In between some range of Titanium from 90 ppm to 630 ppm, up and down in yield strength. Boron 
shows maximum yield strength of 535 MPa at 50 ppm. More than 50 ppm decreases the yield strength to 454 MPa. Niobium has a 
trend of increase in yield strength from 490 to 644 MPa with an increase from 180 to 1400 ppm.  
Heat Input has stated of the yield strength of 490 MPa, then drops in between 1.5 to 6.6 kJ mm-1 to 406 MPa. The highest value of 
yield strength 537 MPa is obtained at and more than 6.7 kJ mm-1. When the Interpass temperature is less than 70 C, the yield 
strength is 538 MPa. More than 70 C decrease in yield strength is observed to 470 MPa and further increase to 490 MPa at 150 C. 
Minimum yield strength is 430 MPa at 270 C. Post weld heat treatment temperature increases up to 425 C shows yield strength 480 
MPa and 490 MPa. More than 455 C, the yield strength increases to maximum 655 MPa at 710 C then drop to 510MPa. Post weld 
heat treatment time has a trend of increase in yield strength from 420 to 490 MPa between 4 to 5 hours. More than 25 hours, it 
increases maximum yield strength to 538 MPa. 
The relationship between  the input variables and yield strength is a nonlinear as seen above in response graphs(Figure 3). 
The GRNN model has good accuracy in prediction of yield strength of ferritic steel welds on unseen data which is excellent for the 
design of welds.(Table.2) The predicted yield strength for the unseen data of three weld alloys are compared with measured values 
of  yield strength shows the prediction capacity of the GRNN model. This GRNN model can be used for practical applications, 
research and development of ferritic steel alloys. 

Table 2  Predicted yield strength by GRNN model for unseen data of three ferritic weld deposits 
Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 0.041 0.049 0.081 
Silicon(wt%) 0.30 0.35 0.24 

Manganese(wt%) 0.62 1.37 0.59 
Sulphur(wt%) 0.007 0.007 0.009 

Phosphorus(wt%) 0.010 0.013 0.012 
Nickel(wt%) 2.38 1.06 10.8 

Chromium(wt%) 0.03 0.03 1.17 
Molybdenum(wt%) 0.005 0.005 0.300 

Vanadium(wt%) 0.012 0.012 0.006 
Copper(wt%) 0.03 0.03 0.30 

Titanium(ppm) 55 55 00 
Boron(ppm) 2 2 1 

Niobium(ppm) 20 20 10 
Heat_input(kJ.mm-1) 1.0 1.0 1.2 

Interpass_temperature(C) 200 200 150 
Postweld_heat_treatment_temperature(C) 250 250 250 

Post-weld_heat_treatment_time(h) 14 14 14 
Measured YS/MPa 466 498 896 
Predicted YS/MPa 466 497 913 

IV.  CONCLUSIONS 
General Regression Neural Network is the best for capturing trends of input variables and output variables in weld alloys which is 
nonlinear. A neural network method based within a General regression neural network has been used to rationalize an enormous 
quantity of published experimental data on the yield strength. It is now possible, therefore, to estimate the yield strength as a 
function of the chemical composition, welding conditions and a variety of heat treatment parameters. 
The model formulated has been applied towards the understanding of ferritic steels alloys used in welding for various equipment 
construction in industries (eg. Power plants, Submarines, Liquid Gas Storage Tanks..etc.) It has been used successfully on unseen 
data on ferritic steel welds for various applications. 
The design of the ferritic  weld alloys become easier, accurate, economical and time-saving with the help of the GRNN modelling. 
The control of the effective input variables gives the desired yield strength of weld alloys for real applications in industries. 
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