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Abstract: The design of ferritic steel welding alloys to fit the ever expected properties of newly evolved  steels is not a very easy 
task. It is traditionally attained by experimental trial and error, changing compositions and welding conditions until a sufficient 
result is established.  Savings in the economy and time might be achieved if the trial process could be minimised. The present 
work outlines the use of an artificial neural network to model the ultimate tensile  strength of ferritic steel weld deposits from 
their chemical compositions, welding conditions and heat treatments. The development of the General regression neural network 
(GRNN) models is explained,  as is the confirmation of their metallurgical principles and precision. 
Keywords: Neural network; Ferritic Steels; Ultimate Tensile Strength; Welding alloys; Variables 

I. INTRODUCTION 
The tensile strength test provides the basic design data essential in both the specification and acceptance of welding materials.  
Although the measurements involved are simple,  their values depend in a complicated way on the chemical compositions,  the 
welding parameters and the heat treatments.   There is no common fundamental or experimental model  capable of estimating the 
tensile parameters as a function of all these variables  [1,2]. 
 The difficulty is the complexity of the nonlinear relationship between input variables and ultimate tensile strength.  The physical 
models for strengthening mechanisms are not sufficiently sophisticated [3]  and the linear regression methods used traditionally   are 
not representing the real behaviour which is far from linear when all the variables are taken into account. 
The aim of this work was to use GRNN to empirically model and interpret the dependence of the ultimate tensile strength of steel 
weld deposits as a function of many input variables. 
The General regression neural network is capable of realising a great variety of nonlinear relationships of considerable complexity. 
Data are presented to the  GRNN in the form of input and output parameters,.  As in regression analysis, the results then consist of  
the regression coefficients and a specification of the kind of function which in combination with the weights relates the independent 
or input variables to the dependent or output variables. 
The design of a model using the GRNN  method requires  a large database of experimental measurements was assembled for neural 
network analysis of ferritic steel welds. 

II. MODELLING WORK 
Database for Modelling: All of the data collected are from weld deposits in which the joint is designed to minimize dilution from the 
base metal, to enable specifically the measurement of all`weld metal properties. Furthermore, they all represent electric arc welds 
made using one of the following processes: manual metal arc (MMAW), submerged arc welding (SAW) and tungsten inert gas 
(TIG). The welding process itself was represented only by the level of heat input. The data were collected from a large number of 
sources.( Table 1). 
The aim of the neural network analysis was to predict the Ultimate Tnsile Strength as a function of a large number of variables, 
including the chemical compositions, the welding parameters and  heat treatments. As a consequence, the Ultimate Tnsile strength 
database consists of 2091 separate experiments with 18 input variables. 
In the present work, a neural network method is used as a Generalised Regression Neural Network[4]. All GRNN networks have 18 
inputs, 1047 neurons in the first hidden layer, 2 neurons in the second hidden layer and 1 neuron in the output layer. (Figure.1) 
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Figure 1. The architecture of Generalized Regression Neural Network 

The hundred and thousand of models were trained with this neural network method in statistica software. The training errors, 
Validation errors (or Selection errors) and testing errors of training dataset(1047), validation data set(522) (or selection dataset) and 
testing dataset(522) of Ultimate Tensile Strength were compared. The lowest traning errors models were selected because they are 
best for practical applications.  

Table 1  The 18 Input variables used in the analysis of the Ultimate Tensile Strength 
Variables Min Max Average StDev Variables Min Max Average StDev 

C wt% 0.01 0.22 0.0705 0.021 Cu wt% 0 2.18 0.0597 0.1953 

Si wt% 0.01 1.63 0.3477 0.1283 O ppm 0 1650 377.6982 166.9297 

Mn wt% 0.23 2.31 1.1955 0.4156 Ti ppm 0 1000 80.0548 124.85 

S wt% 0.001 0.14 0.008 0.0051 B ppm 0 200 9.3161 28.1533 

P wt% 0.001 0.25 0.0107 0.0073 Nb ppm 0 1770 51.1751 141.6126 

Ni wt% 0 10.66 0.581 1.5071 HI  kJ 
mm-1 

0.55 7.9 1.3392 0.9366 

Cr wt% 0 12.1 0.5869 1.4827 IPT C 20 375 206.4539 41.9047 

Mo wt% 0 2.4 0.1988 0.3606 PWHTT 
C 

20 770 333.6054 206.2762 

V wt% 0 0.32 0.0187 0.0506 PWHTt  
h 

0 50 9.7532 6.5109 

UTS 
MPa 

273 1184 621.21 123.49 

III. RESULTS AND DISCUSSION 
The normal behaviour of the Predicted Ultimate Tensile and Observed Ultimate Tensile Strength are observed in the Figure. 2 for 
Training data, Validation data and Testing data. Training of the model is excellent by GRNN method. 
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Figure  a  Training Data for GRNN model of Ultimate Tensile 
Strength 

 
Fig  b  Validation Data for GRNN model of Ultimate Tensile 
Strength 

 
Fig c   Test Data for GRNN model of Ultimate Tensile Strength 

Figure  2 Training data, validation data and test data of the Best GRNN model for Ultimate Tensile Strength. 
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 The best model of GRNN has training error 0.011404, validation error (selection error) 0.018101, and testing error 0.018669. This 
model is used for getting the results in form of various response graphs to understand the trend between the input variables and 
output variable(Ultimate Tensile Strength).(Figure 3) 

  
a Ultimate Tensile Strength(MPa) – Carbon(wt %) b Ultimate Tensile Strength(MPa) – Silicon(wt %) 

  
c Ultimate Tensile Strength (MPa) – Manganese (wt %) d Ultimate Tensile Strength (MPa) – Sulphur (wt %) 

 
 

e Ultimate Tensile Strength (MPa) – Phosphorus(wt %) f  Ultimate Tensile Strength (MPa) – Nickel(wt %) 
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g Ultimate Tensile Strength (MPa) – Chromium(wt %) h Ultimate Tensile Strength (MPa) – Molybdenum(wt 

%) 

  
i Ultimate Tensile Strength (MPa) – Vanadium(wt %) j Ultimate Tensile Strength (MPa) – Copper(wt %) 

  
k Ultimate Tensile Strength (MPa) – Oxygen(ppm) l Ultimate Tensile Strength (MPa) – Titanium(ppm) 
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m Ultimate Tensile Strength (MPa) – Boron(ppm) n Ultimate Tensile Strength (MPa) – Niobium(ppm) 

  
o Ultimate Tensile Strength (MPa) – Heat input (kJ mm-1) p Ultimate Tensile Strength (MPa) – Interpass 

temperature  (C) 

  
q Ultimate Tensile Strength (MPa) – Post-weld heat 
treatment temperature (C) 

r Ultimate Tensile Strength (MPa) – Post-weld heat 
treatment time (h) 

Figure 3 Response graphs(a to r) of Input variables Ultimate Tensile Strength of Ferritic Steel Welds 
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The influence of each of the variables on the ultimate tensile  strength of welding alloys, which is discussed here. The carbon 
increases the ultimate tensile  strength up to 635 MPa near to 0.13%, and the minimum at 530 MPa at 0.02%. Overall %C increases 
between 0.02% to 0.22%, give a general increase in the ultimate tensile  strength.   
Some points are observed to decrease maximum up to 27 MPa at 0.08%C and 25 MPa at 0.198%C. In the case of silicon between 
0.1% to 0.8%, there is an increase of the 505 MPa to 580 MPa in the ultimate tensile  strength and then constant to 570 MPa 
between 0.9% to 1.3% Si with drop in 10MPa at0. 82% Si.  
At 1.35%, the ultimate tensile  strength is maximum 625 MPa. The trend of manganese shows the increase in the Mn% from 0.2% 
to 2.08%, the value of the ultimate tensile  strength is also increased from 478 MPa to 648 MPa.  After 2.08% Mn, there is reduced 
to 592 MPa at 2.4% Mn. 
 The sulphur shows the first decrease in the ultimate tensile  strength from 548 MPa to 523 MPa.  
At  0.08%,  it is increased from 523 MPa to 625MPa. The Phosphorus gives the increase in the ultimate tensile  strength from 536 
MPa to 625 MPa. The nickel has the maximum ultimate tensile  strength of 680 MPa at 5.8% and minimum 538 MPa at 1.3%. In the 
figure, it shows at 2.5% the ultimate tensile  strength value drops from 622 MPa to 605 MPa. More than 5.8 %i Ni gives a further 
drop in ultimate tensile  strength 625 MPa.  
The Chromium has a maximum ultimate tensile strength of 809 MPa between 3% to 5.5%. More than 5.5% Cr reduces the ultimate 
tensile strength to 623 MPa. Increase in the ultimate tensile strength from 538 MPa to 809 MPa only by the gradual addition of 
chromium up to 4%. Molybdenum increases the ultimate tensile strength from 547 MPa to 880 MPa at 1.68%. At 1.68% Mo gives a 
maximum ultimate tensile strength 880 MPa.  
More than 1.68% Mo decreases ultimate tensile strength from 880 MPa to 625 MPa.    
Vanadium increases the ultimate tensile strength from a minimum 532 MPa to a maximum 626 MPa at 0.17%. At 0.17% V, ultimate 
tensile strength is constant to 626 MPa. Copper increases the ultimate tensile strength from 538 MPa to 638 MPa at 1.45%. Between 
0.48% to 0.74% Cu, the ultimate tensile strength decreases to 535 MPa. Cu gives maximum tensile strength of 638 MPa when it is 
in range, from 1.45% to 2.0%. Oxygen lowers the ultimate tensile strength of 570 MPa to 500 MPa when it is in the range of 820 
ppm to 1020 ppm Oxygen content.  
Higher than 1020ppm Oxygen, there is an increase in the ultimate tensile strength from 500 MPa to 625 MPa. Titanium gives a 
minimum ultimate tensile strength of 539 MPa to maximum 625 MPa. At 775 ppm ultimate tensile strength is the highest. In 
between some range of Titanium from 40 ppm to 675 ppm, up and down in range of 5 MPa to 20MPa in the ultimate tensile 
strength.  
Boron shows maximum ultimate tensile strength of 587 MPa at 58 ppm. More than 58 ppm, there is an up and down in ultimate 
tensile strength between the difference of 50MPa to 20 MPa. Niobium has a trend of increase in ultimate tensile strength from 542 
MPa to 708 MPa with an increase from 180 to 1400 ppm.  
Heat Input has stated that the maximum ultimate tensile strength of 625 MPa at 5.5 kJ mm-1. Between 0.5 kJ mm-1 to 5.5 kJ mm-1 
reduces from 540 MPa to 500 MPa.  
When the Interpass temperature is less than 70 C, the ultimate tensile strength is 575 MPa. More than 70 C, a decrease in ultimate 
tensile strength is observed to 513 MPa with increase in Interpass temperature up to 270 C. Post weld heat treatment temperature 
increases from 50 C to 750 C, shows ultimate tensile strength decrease from 596 MPa to 530 MPa. Post weld heat treatment time 
has a trend of increase in ultimate tensile strength from 500 to 539 MPa between 2 to 25 hours. More than 25 hours, it increases 
maximum ultimate tensile strength to 625 MPa. 
The relationship between  the input variables and the ultimate tensile strength is a nonlinear as seen above in response graphs 
(Figure 3). 
The GRNN model has good accuracy in prediction of ultimate tensile strength of ferritic steel welds on unseen data which is 
excellent for the design of welds.  
(Table.2) The predicted ultimate tensile strength of the unseen data of three weld alloys are compared with measured values of  
ultimate tensile strength shows the prediction capacity of the GRNN model. This GRNN model can be used for practical 
applications, research and development of ferritic steel alloys. 
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Table 2  Predicted Ultimate Tensile strength by GRNN model for unseen data of three ferritic weld deposits 
Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 0.041 0.088 0.11 
Silicon(wt%) 0.3 0.35 0.28 

Manganese(wt%) 0.62 0.54 0.6 
Sulphur(wt%) 0.007 0.007 0.007 

Phosphorus(wt%) 0.010 0.009 0.016 
Nickel(wt%) 2.38 7.0 10.62 

Chromium(wt%) 0.03 0.15 1.13 
Molybdenum(wt%) 0.005 0.4 0.3 

Vanadium(wt%) 0.012 0.016 0.006 
Copper(wt%) 0.03 0.01 0.3 
Oxygen(ppm) 440 290 290 
Titanium(ppm) 55 0.0 0.0 

Boron(ppm) 2.0 1.0 1.0 
Niobium(ppm) 20 10 10 

Heat_input(kJ.mm-1) 1.0 1.4 1.4 
Interpass_temperature(C) 200 150 200 

Postweld_heat_treatment_temperature(C) 250 250 250 
Post-weld_heat_treatment_time(h) 14 16 16 

Measured UTS/MPa 538 972 1194 
Predicted UTS/MPa 538 978 1183 

IV. CONCLUSIONS 
The General Regression Neural Network is the best for capturing trends of input variables and output variables in weld alloys which 
are nonlinear. A neural network method based within a General regression neural network has been used to rationalize an enormous 
quantity of published experimental data on the Ultimate Tensile  strength. It is now possible, therefore, to estimate the Ultimate 
Tensile strength as a function of the chemical composition, welding conditions and a variety of heat treatment parameters. 
The model formulated has been applied towards the understanding of ferritic steel alloys used in welding for various equipment 
construction in industries (eg. Power plants, Submarines, Liquid Gas Storage Tanks..etc.) It has been used successfully on unseen 
data on ferritic steel welds for various applications. 
The design of the ferritic  weld alloys become easier, accurate, economical and time-saving with the help of the GRNN modelling. 
The control of the effective input variables gives the desired Ultimate Tensile strength of weld alloys for real applications in 
industries. 
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