

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: X Month of publication: October 2018
DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Remark on the Paper Entitled Lattice Points of a Cubic Diophantine Equation $11(x + y)^2 = 4(xy + 11z^3)$

M.A.Gopalan¹, S.Vidhyalakshmi²

^{1, 2}Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.

Abstract: In this paper, new sets of solutions to the cubic equation with three unknowns given by $11(x + y)^2 = 4xy + 44z^3$ are presented.

Keywords: Ternary cubic, Integer solutions

I. INTRODUCTION

When a search is made for cubic diophantine equations, the authors noticed a paper by Manju Somanath, J. Kannan, K. Raja [1] in which they have presented lattice points of the cubic diophantine equation $11(x + y)^2 = 4xy + 44z^3$. However, there are other interesting sets of solutions to the above equations that are exhibited in this paper.

II. METHOD OF ANALYSIS

Consider the cubic equation with three unknowns given by	
$11(x+y)^2 = 4xy + 44z^3$	(1)
To start with, the substitution	
y = (2k - 1)x	(2)
in (1) gives	
$(11k^2 - 2k + 1)x^2 = 11z^3$	
which is satisfied by	
$x = 121(11k^2 - 2k + 1)\alpha^3$	(3)
$z = 11 \left(11k^2 - 2k + 1 \right) \alpha^2$	(4)
Note that $(2) - (4)$ satisfies (1)	
Again, the substitution	
y = 2kx	(5)
in (1) leads to	
$(44k^2 + 36k + 11)x^2 = 44z^3$	
whose solutions are	
$x = 242(44k^2 + 36k + 11)\alpha^3$	(6)
$z = 11(44k^2 + 36k + 11)\alpha^2$	(7)
Thus, (5)-(7) satisfy (1)	
Further,	
Introduction of the linear transformations	
x = u + v, y = u - v, z = u	(8)
in (1) leads to	
$v^2 = u^2 (11u - 10)$	(9)
After performing some algebra, it is noted that (9) is satisfied by the following two choices of u and v :	
1) $u = 11k^2 - 2k + 1, v = (11k - 1)(11k^2 - 2k + 1)$	
2) $u = 11k^{2} + 2k + 1, v = (11k + 1)(11k^{2} + 2k + 1)$	

Volume 6 Issue X, Oct 2018- Available at www.ijraset.com

In view of (8), the corresponding two sets of values to x, y, z satisfying (1) are represented below:

a) Set 1: Consider choice (i). The values of x, y, z are:

$$x = 11k(11k^{2} - 2k + 1)$$

$$y = (2 - 11k)(11k^{2} - 2k + 1)$$

$$z = 11k^{2} - 2k + 1$$

$$k = 2$$

Consider choice (1)

b) Set 2: Consider choice (ii). The values of x, y, z are:

 $x = (11k + 2)(11k^{2} + 2k + 1)$ $y = -11k(11k^{2} + 2k + 1)$ $z = 11k^{2} + 2k + 1$

REFERENCE

[1] Manju Somanath, J.Kannan, K.Raja, "Lattice Points Of A Cubic Diophantine Equation $11(x + y)^2 = 4(xy + 11z^3)$ ", IJRASET, Volume 5, Issue 5,1797-1800, 2017.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)