
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

Remark on the Paper Entitled Lattice Points of a Cubic Diophantine Equation $11(x+y)^{2}=4\left(x y+11 z^{3}\right)$

M.A.Gopalan ${ }^{1}$, S.Vidhyalakshmi ${ }^{2}$
${ }^{1,2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.

Abstract: In this paper, new sets of solutions to the cubic equation with three unknowns given by $11(x+y)^{2}=4 x y+44 z^{3}$ are presented.

Keywords: Ternary cubic, Integer solutions

I. INTRODUCTION

When a search is made for cubic diophantine equations, the authors noticed a paper by Manju Somanath, J. Kannan, K. Raja [1] in which they have presented lattice points of the cubic diophantine equation $11(x+y)^{2}=4 x y+44 z^{3}$. However, there are other interesting sets of solutions to the above equations that are exhibited in this paper.

II. METHOD OF ANALYSIS

Consider the cubic equation with three unknowns given by

$$
\begin{equation*}
11(x+y)^{2}=4 x y+44 z^{3} \tag{1}
\end{equation*}
$$

To start with, the substitution

$$
\begin{equation*}
y=(2 k-1) x \tag{2}
\end{equation*}
$$

in (1) gives

$$
\left(11 k^{2}-2 k+1\right) x^{2}=11 z^{3}
$$

which is satisfied by

$$
\begin{align*}
& x=121\left(11 k^{2}-2 k+1\right) \alpha^{3} \tag{3}\\
& z=11\left(11 k^{2}-2 k+1\right) \alpha^{2} \tag{4}
\end{align*}
$$

Note that (2) - (4) satisfies (1)
Again, the substitution

$$
\begin{equation*}
y=2 k x \tag{5}
\end{equation*}
$$

in (1) leads to

$$
\left(44 k^{2}+36 k+11\right) x^{2}=44 z^{3}
$$

whose solutions are

$$
\begin{align*}
& x=242\left(44 k^{2}+36 k+11\right) \alpha^{3} \tag{6}\\
& z=11\left(44 k^{2}+36 k+11\right) \alpha^{2} \tag{7}
\end{align*}
$$

Thus, (5)-(7) satisfy (1)
Further,
Introduction of the linear transformations

$$
\begin{equation*}
x=u+v, \quad y=u-v, \quad z=u \tag{8}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
v^{2}=u^{2}(11 u-10) \tag{9}
\end{equation*}
$$

After performing some algebra, it is noted that (9) is satisfied by the following two choices of u and v :

1) $u=11 k^{2}-2 k+1, v=(11 k-1)\left(11 k^{2}-2 k+1\right)$
2) $u=11 k^{2}+2 k+1, v=(11 k+1)\left(11 k^{2}+2 k+1\right)$

In view of (8), the corresponding two sets of values to x, y, z satisfying (1) are represented below:
a) Set 1: Consider choice (i). The values of x, y, z are:
$x=11 k\left(11 k^{2}-2 k+1\right)$
$y=(2-11 k)\left(11 k^{2}-2 k+1\right)$
$z=11 k^{2}-2 k+1$
b) Set 2: Consider choice (ii). The values of x, y, z are:
$x=(11 k+2)\left(11 k^{2}+2 k+1\right)$
$y=-11 k\left(11 k^{2}+2 k+1\right)$
$z=11 k^{2}+2 k+1$

REFERENCE

[1] Manju Somanath, J.Kannan, K.Raja, "Lattice Points Of A Cubic Diophantine Equation $11(x+y)^{2}=4\left(x y+11 z^{3}\right)$ ", IJRASET, Volume 5, Issue 5,1797-1800, 2017.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

