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Abstract- The Instability mechanism of Thermosolutal convection in a horizontal layer of viscoelastic Maxwell fluid through 
porous medium with internal linear heating is presented in this manuscript. The flow is also affected with temperature and 
concentration gradient in their medium. The Darcy model is adopted in the momentum equation. The onset of instabilities of 
the viscolastic Maxwell fluid layer is determined between free-free boundaries. The main emphasis is given to the internal 
heating which is linear in nature.  The entire result section is presented in form critical heat source of intensity with respect 
to other governing physical parameter.   
Keywords – Viscoelasic Maxwell fluid, Porous media, Rayleigh number, Internal heat source.  

I. INTRODUCTION 

The study of the onset of thermosolutal or double – diffusive convection in fluid saturated porous layer has been an active area 
of research interest for many years. These phenomena of combined heat and mass transfers where both temperature and solute 
fields contribute to the buoyancy of the fluid have many applications in the behaviour of fluids in the crust of the earth, 
geophysics, metallurgy, material science and petroleum engineering. For instance, in geo- logical processes thermosolutal 
convection in porous media may be important in dolomitisation of carbonate platforms (Kaufman )[1], soil salinisation  (Gilman 
and Bear)[2] .Comprehensive reviews of the literature on double – diffusive natural convection in porous media and its 
applications can be found in Nield and Bejan [3] 
There are large number of practical situations in which convection is driven by internal heat source in the porous media. The 
wide applications of such convections occur in nuclear reactions, nuclear heat cores, nuclear energy, nuclear waste disposals, oil 
extractions, and crystal growth. The study concerning internal heat source in porous media is provided by Tveitereid [4], who 
obtained the steady solution in the form of hexagons and two dimensional rolls for convection in a horizontal porous layer with 
internal heat source. Bejan [5] studied analytically the buoyancy induced convection with internal heat source, Parthiban and 
Patil [6] studied the effect of non-uniform boundaries temperatures on thermal instability in a porous medium with internal heat 
source and predicted that internal heat source parameter advances the onset of convection. Hill [7] performed linear and 
nonlinear stability analyses of double-diffusive convection in a porous layer with a concentration based internal heat source. 
Saravanan [8] investigated linear stability analysis for the onset of natural convection in a fluid saturated porous medium with 
uniform internal heat source and density maximum in an local thermal nonequilibrium model and predicted that internal heat 
source parameter advances the onset of convectionRecently Bhadauria group [9-12] have studied the problem of thermal 
instability in porous media with internal heating, considering various physical models 
Straughan and Hutter [13] have investigated the double diffusive convection with Soret effect in a porous layer using Darcy–
Brinkman model and derived a priori bounds. An analytical and numerical study of double diffusive parallel flow in a horizontal 
sparsely packed porous layer under the influence of constant heat and mass flux is performed using a Brinkman model by 
Amahmid et al. [11]. Mamou and Vasseur [12] have studied the double diffusive instability in a  horizontal rectangular porous 
enclosure subject to vertical temperature and concentration 
gradients Double diffusive convection in a vertical enclosure filled with anisotropic porous media has been studied numerically 
by Bennacer et al. [13]. 

II.  MATHEMATICAL FORMULATIONS OF THE PROBLEM 

Let us Consider an infinite horizontal layer of viscoelastic Maxwell fluid with thickness “푑,” cramped  in the  planes around  푧 = 
0 and 푧 = 푑 in a dense porous whose porosity is 휀 & media permeability is approximately 1 this layer is  instigate by aligned 
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gravitational vector g(0, 0, −푔). The fluid layer is at the constant temperature and concentration at the boundaries. The 
temperature & concentration is taken T0 and C0 at the boundary 푧 = 0 and assumes to be 푇1 and 퐶1 be the difference in 
temperature and concentration across the boundaries.            
Here the symoble is representing as  q(푢, V, 푤), 푝, 휌, 푇, 퐶, 훼, 훼 ,  휇, 휅, and 푘  , 푸ퟎ be the Darcy velocity vector, hydrostatic 
pressure, density, temperature, solute concentration, coefficient of thermal expansion, an  analogous solvent coefficient of 
expansion, viscosity, thermal diffusivity,  solute diffusivity, and linear heat source  of fluid, respectively.  
The following assumptions is made for the mathematical formulation of the physical problem 

A.  Assumptions 
1) Thermo physical properties expect for density difference at  the buoyancy are constant. 
2) Darcy’s model is adopted in momentum equation. 
3) The medium is assumed to be isotropic and homogeneous in nature. 
4) The fluid and solid matrix are taken to be in thermal equilibrium state. 
5) Radiation heat transfer is neglected during the process but internal heating is taken care during the heat transfer of the fluid 

flow process 
Under the above assumptions the governing equations are given below 

B.  Governing Equations 
The Governing equations for viscoelastic Maxwell fluid through porous medium is governed in form of partial differential 
equation which may written as  
∇. 푞 = 0                                                                       

ퟏ + 흀 (−훻푝+휌	(1 − 훼(푇 − 푇 ) + 훼 (퐶 − 퐶 )푔)) −
`
풒 = ퟎ             

	흈 + q.∇T = 푘	훁ퟐ푻 + 	푫푻푪훁ퟐ푪 +푸ퟎ(푻 − 푻ퟎ),                                            

	휺 + q.∇C = 푘 훁ퟐ	푪+ 	푫푪푻훁ퟐ푻,                             (1) 

Where 푫푻푪	풂풏풅	푫푪푻 are the dufour and Soret coefficients ;	흈 = (흆풄풑)풎/= (흆풄풑)풇 is the thermal capacity , 풄풑is specific 
heat, and the subscript m and f refer to porous medium and fluid, respectively. 

Here the wall  temperature and concentration assumed to be constant w.r.t the  boundaries of the fluid layer. Therefore , the 
boundary condition are define as follows 

푤 = 0,푇 = 푇 		,퐶 = 	 퐶 			푎푡	푧 = 0                   

푤 = 0,푇 = 푇 	 	,퐶 = 	 퐶 			푎푡	푧 = 푑                                       (2) 

C. Steady state and its solutions 
The steady state solution can be obtained by assuming 

 푢 = 푣 = 푤 = 0, 푝 = 푝(푧),푇 = 푇 (푧),퐶 = 퐶 	(푧)                       (3) 

The steady state solution is given by 

푇 = 푇 − ∆푇 ,  

퐶 = 퐶 − ∆퐶                                                    (4)   

푝 = 푝 −	푝 푔(푧 + 훼 ∆ 푧 + 훼 ∆ 푧 )  

Where subscript 0 shows the value of the variable at boundary z = 0 

D.  Disturbance in flow 
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In order to investigate the stability of the flow dynamic, it necessary to give  imposed infinitesimal perturbations on the basic 
state which is well documented in the book of Chandershakra rao (1992), The perturbation on the base flow is defined as . 

푞 = 0 + 푞  , 푇 = 0 + 푇 ,  C= 퐶 + 퐶  , 푝 = 푝 + 푝                    (5) 

where the parameters 푞  , 푇 ,  퐶  , 푝     is known as the  perturbed quantities of the mean flow dynamics. Substituting (5) into (1) 
and neglecting higher order terms of the perturbed quantities,  then we get 
∇. 푞 = 0  
 
ퟏ + 흀 (−∇		p + 휌 (αT + α C )g) =

풌ퟏ	
풒′   

 

σ −ω ∆ = κ(훁ퟐ + 푸)푻 + 	푫푻푪훁ퟐ푪                                                      

   휺 − ω ∆ 		= κ (훁ퟐ)푪 + 	푫푪푻훁ퟐ푻                                         (6) 

the dimensionless parameters are defines  as follows. 

푥" ,푦", 푧" = (푥 ,푦 , 푧 ),	         푢", 푣",푤" = (푢 ,푣 ,푤 ),        푡" = 푡 ,    푇" =
∆
						 ,퐶" =

∆
				,			푝" = 푝′     ,  

푸 = 풉ퟐ푸ퟎ
휶풎(흆풄풑)풇

	,   (7) 

Remove asterisk for the simplicity 
∇. 푞 = 0  
 

1 + 	퐹 (−∇p + RaT + RaC) − q = 0  

− w == (훁ퟐ + 푸)푻 + 	푫풇훁ퟐ푪,                                                         

−w = 훁ퟐ푪+ 	 푺풓훁ퟐ푻                                              (8)      

The different  non-dimensional parameters are defined as follows. 

,  푅푎 = 	 	∆ 	 is the thermal Rayleigh number , 푅푠 = 	 	∆ 			 is the solutal Rayleigh number, 퐿푒 = 	 is the Lewis 

number, 퐹 = ( )휆 is the stress relaxation parameter and Q is the rate of heat addition per unit mass by internal sources 

푸 = 풉ퟐ푸ퟎ
휶풎(흆풄풑)풇

.  퐷 = 	 ,				s the Dufour parameter, and 푆푟 = 	 	 is the Soret parameter.The nondimensional boundary 

conditions are 
 The non dimensional boundary conditions are 

푤 = 푇 = 퐶 = 0	푎푡	푧 = 0, 푧 = 1                                    (9) 

III. NORMAL MODES AND STABILITY ANALYSIS 

The disturbances of the mean flow are taken into account in term of normal modes analysis which is well documented in the 
book of Drazin (1987).   
      [푤, 푇,퐶] = [푊(푧),Θ(푧),Γ(푧)]	exp	(푖푘 푥 + 푖푘 푦 + 푛푡)                                            (10) 
Where the parameters  푘 	,푘  are called as wave numbers along with different coordinate axis 푥 and 푦 respectively, and 푛 is 
defined as growth rate of disturbances. By using eq  (10) the system of eq (8) becomes 
 (퐷 − 푎 )푊 + (1 + 퐹푛)(푎 푅푎Θ+ 푎 푅푠Γ) = 0  

푊 + (퐷 − 푎 − 푛 − 푄)	Θ+ 			퐷 (퐷 − 푎 )Γ) = 0  

푊 + 푆 (퐷 − 푎 )Θ+ (퐷 − 푎 ) − 푛 Γ = 0  
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Where 퐷 = 	푎푛푑	푎 = 푘 + 푘    is define as dimensionless wave number. 
The corresponding free – free boundary conditions are 
 푊 = 0,퐷 푊 = 0,Θ = 0,Γ = 0,푎푡	푧 = 0 
푊 = 0,퐷 푊 = 0,Θ = 0, Γ = 0, 푎푡	푧 = 1                            (12) 
 
We assume the solution to      푊, Θ, 푎푛푑		Γ     is of the form 
푊 = 푊 sin휋푧 , Θ = Θ sin휋푧 , Γ = Γ sin휋푧,	                    (13) 
 
Those satisfy the  boundary conditions (12). 
 
Substituting solution (13) in (11), integrating each equation  from 푧 = 0 to 푧 = 1 by parts, we obtain the following matrix 
equation as 
 
 
퐽 −푎 (1 + 퐹푛)푅푎 −푎 (1 + 퐹푛)푅푠
−1 (퐽 + 푛 +푄) 퐷 퐽

−1 		푆 퐽 + 	
	
푊
Θ
Γ

=
0
0
0

      (14) 

  
Where 퐽 = 휋 + 푎  
The nontrivial solution corresponding to the matrix given in eq (14) 
 

푅푎 =
( )( )( 	 )

( ) ( )
+ ( )( ( ))

( )
푅푠                (15) 

For neutral instability 푛 = 푖휔, (where 휔 is real and dimensionless frequency of oscillation) and equating real and imaginary 
parts of (15), we have 
 

퐽 −	 + − 푆 퐷 퐽 + 푎 푅푎(퐽 퐷 − + − 푎 푅푠(퐽 +푄 − 푆 퐽 −ω 퐹) = 0		  

퐽 + + 푎 푅푎 퐹퐽 퐷 − − −푎 푅푠(퐽퐹 − 푆 퐽퐹 + 퐹푄) = 0            (16) 
 
For stationary convection 휔=0 (n=0), we have 

푅푎 =
( ) ( )

+ [ ]	
	 ( )

푅푠                             (17) 

 
Here the onset instability is measured in form of stationary convection. The different parameter is defined as, the Rayleigh 
number Ra is a function of dimensionless wave number 푎, Dufour parameter퐷 , Soret parameter푆 , Lewis number Le and 
solutal Rayleigh number Rs, and internal heat source푄. Thus for stationary convection of   viscoelastic Maxwell fluid is work as 
an ordinary Newtonian fluid.  
The critical cell size at the onset of instability is calculated from. 

= 0    Which gives  푎 = 휋 

The corresponding critical Rayleigh number 푅푎 	 for the steady onset is  
 

푅푎 = 4휋 ( + ( ) 푅푠                                      (18) 

If  푆 = 퐷 = 푅푠 = 0	 then  푅푎 = 4휋                                  (19) 
 

IV. RESULT AND DISCUSSION 
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The onset of double diffusive convection in a horizontal layer of Maxwell viscoelastic fluid in the presence of internal 
generation  effect along with Soret and Dufour in a porous medium is investigated analytically. The stationary convection 
through critical  Rayleigh numbers is characterize the stability of the flow dynamics. All the fundamental solution is obtained 
analytically. The normal mode analysis is taken in to account to find the stability equations. During the study it is found that the  
stationary critical Rayleigh number  independent from the viscoelastic parameter F; in such case the  Maxwell viscoelastic 
binary  fluid behaves like ordinary Newtonian binary fluid. The basic flow of the above study shows that the critical Rayleigh 
number and critical wave number are independent from  viscoelastic parameter. 
The vide range of different controlling parameter is defined below the solutal Rayleigh number Rs, Soret Parameter 푆  ,Dufour 
Parameter 퐷  and Lewis Number Le are in the range of 10 ≤ 푅푠 ≤ 10  (solutal Rayleigh number),	0 ≤ 푆 ≤ 1 (Soret 
parameter), ,	0 ≤ 퐷 ≤ 1 (Dufour parameter), and 10 ≤ 퐿푒 ≤ 1  respectively. Wherever the thermal Rayleigh number is  
taken to be in between 10 ≤ 푅푎 ≤ 10  . The of Dufour effect 퐷푓 and Lewis number Le in taken in such a way that 퐷 퐿푒 ≠ 1. 
The stability boundary curve for the different values of internal heat generation is shown below. The internal heat source 푄  is 
taken to be 0.5, 1 , 5, 10 respectively. There are four graph has been plotted for the variety of parameters to explain the stability 
of the flow dynamics. In each figure the attempt has been taken care to explain various parameter in a single figure. Keeping in 
view the above statement.  
 

 
Figure 1 Variation of Critical Rayleigh Number Ra and Wave number for a Different value of Dufour Effect at Q=0.5 

Figure 1 is plotted in Ra Critical and wave number a plane. Which shows the variation of stationary Rayleigh number with wave 
number for different values of Dufour parameter while fixing the value if Le=1 , Q =0.5 , Sr = 0.7 and 푅푠 = 5 × 10  
respectively. There are three types of line is plotted Dash dot (--….-…) , dahsesd (- - - - - - - ) and solid line (------------ ) which 
shows the different value of Dufour parameter 0.1, 0.5 and 0.9 respectively.   In this plot it has been found that the as we 
increase the dufour effect the slop of the critical Ra is being decreases which is at 102, 99 and 84 respectively which also shifted 
in case of wave number. It means that the critical boundary is not stagnant in this case. This also pointed out from the plot that 
the between 0 < 푎 < 5 the Ra Criticaln decreases rapidly then increases smoothly. Concluding,  it is found that the Critical 
Rayleigh number first increases then decreases and finally increases with increase in the value of Dufour parameter; thus for 
stationary convection Dufour parameter shows both the stabilizing and destabilizing effects depending upon different condition 
conditions. But for large value of a it shows the stabilizing character.  

 
Figure 2 Variation of Critical Rayleigh number Ra and Wave number  for a different value of soret parameter Sr at Q=1 
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Figure 2 is plotted between  Ra Critical and wave number a plane for the different range of soret parameter. Around this the 
objective is identify the role of  thermo-diffusion  at partially high value of internal heat source. This phenomenon observed in 
mixtures of  porous particles during fluid flow where the different particle types exhibit different responses to the force of 
a thermal gradient. Thermodiffusion is labeled "positive" when particles move from a hot to cold region and "negative" when 
the reverse is true. Here we fix the internal heat source parameter is at 5 , which shows the 5 times effect from the previous. 
Here we observed that there is not much different is recorded in term of stability curve which but the characteristics profile is 
reverse. There are three types of line is plotted Dash dot (--….-…) , dahsesd (- - - - - - - ) and solid line (------------ ) which 
shows the different value of soret parameter 0.1, 0.5 and 0.9 respectively. In this plot it has been found that the as we increase 
the dufour effect the slop of the critical Ra is being decreases which is at 101.8 , 99.3 and 84.7 respectively. Concluding,  it is 
found that the Critical Rayleigh number first increases then decreases and finally increases with increase in the value of Dufour 
parameter; thus for stationary convection Dufour parameter shows both the destabilizing and stabilizing effects depending upon 
different condition conditions. But for large value of a it shows the stabilizing character as we seen in Figure1..  

 
Figure 3 Varaition of Critical Rayliegh number Ra and wave number for a different value of Lewis number Le at Q =5 

Figure 3 shows the variation of stationary Rayleigh number with wave number for different values of Lewis number and it is 
found that the Rayleigh number first increases then decreases and finally increases with increase in the value of Lewis number; 
thus for stationary convection Lewis number has both the stabilizing and destabilizing effects depending upon certain 
conditions. 

 
Figure 4 Variation of Rayliegh number Ra and Wave number number a for different value of Solutal Reyleigh number Rs at 

Q=10 

Figure 4 shows the variation of Rayleigh number with wave number for different value of the solutal Rayleigh number Rs and it 
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is found that the Rayleigh number decreases with increase in the value of solutal Rayleigh number Rs; thus solutal Rayleigh 
number Rs has destabilizing effect on the.  
From all the figure it is also pointed out that there no much different is recorded while changing the heat source effect 
qualitatively but quantitatively minor effect is found which shows the destabilizing character in small interval of wave number 
of the flow dynamics.   

V. CONCLUSIONS 

The linear stability analysis of double diffusive convection in a horizontal layer of Maxwell viscoelastic fluid in the presence of 
Soret and Dufour in a porous medium is performed analytically. The normal mode analysis is taken into account for stability 
analysis. The onset of stationary instability through critical Rayleigh numbers is analyzed ,  
The following points conclude the study of this paper. 
A. During stationary convection the Maxwell - viscoelastic fluid is shows the effect like a ordinary Newtonian fluid. 
B.  Dufour, Soret parameter, both shows the stabilizing and destabilizing character during the stationary convection. 
C. Lewis parameter is also have both stabilizing and destabilizing character during stationary convection. 
D. Solutal Rayleigh number is play destabilizes characteristics during the stationary convection. 
E. Internal heat source destabilizes the stationary convection in the small interval of wave number. 
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