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Abstract: With the emerging complexity of today’s software applications injunction with the increasing competitive pressure has 
pushed the quality assurance of developed software towards new heights. Software testing is an unavoidable part of the software 
development lifecycle and keeping in line with its criticality in the pre and post development process makes it something that 
should be catered with enhanced and efficient techniques and methodologies. A test case is used to find out the undiscovered 
error in the software. A large number of test cases are available in the test pool and it is required to select the most important test 
case in the cost effective manner. A family of dynamic partitioning algorithm was proposed to selectively execute test cases from 
a large number of test suites for evolving software. Based on online feedback the dynamic partitioning was performed. The 
online feedback was collected during test case executions. It doesn’t refer any kind of change analysis, coverage information or 
human judgment. Hence it improved the cost effectiveness of software testing. In this paper, the cost effective software testing is 
further improved by integrating the dynamic partitioning and feedback based defect prediction method which is named as Cost 
Effective- Dynamic Partitioning Strategy-Defect Prediction (CE-DPS-DP). The dynamic partitioning strategy partition the test 
cases based on the online feedback information. The partitioned test cases are used in the feedback based defect prediction 
method. This method employs the local predicator and global predicator for defect prediction. The local predicator and global 
predicator are combined by weight to output the prediction results. Thus the integrated dynamic partitioning and feedback based 
defect prediction improves the prediction accuracy and maintains the cost for software testing effectively. The experimental 
results show that the proposed approach provides better results than the conventional approach.  
Keywords: Software testing, dynamic partitioning, defect prediction, cost-effective software testing. 

I. INTRODUCTION 
Generally, Software testing [1] ensures the desired developed software meets its predefined objectives. Software testing is an 
important cost factor in the software development life-cycle [2]. Test activities are unavoidable and important to guarantee high 
quality software products. It is also an expensive and time consuming work, during which generally, software engineers need to 
spend 50%-60% development costs on software testing activities [3]. During Software Testing Process (STP), the situation of test 
resource constraints is a common phenomenon due to the limitation of development cost or deadline in software development.  
Defect prediction provides an effective way to reveal the likely defective parts before testing [4]. Its results are often used to guide 
the testing strategy.  
A dynamic partitioning strategy [5] was proposed as a cost-effective software testing strategy which was an online partitioning 
strategy where test cases were selected based on the feedback information. In dynamic partitioning strategy, the partitioning was 
performed online rather than off-line and it was not based on program specifications or code. In this paper, the cost-effective 
software testing strategy is further improved by proposed Cost Effective- Dynamic Partitioning Strategy-Defect Prediction (CE-
DPS-DP).  
The CE-DSP-DP integrates the dynamic partitioning and feedback based defect prediction. The partitioned test cases by dynamic 
partitioning are used in the test action process of feedback based defect prediction method. The defect prediction method used the 
local and global predicator to predict the defects in software. The local predicator is trained by the data generated during the 
Software Testing Process (STP) and the global predicator is trained by the whole data. The local predicator and global predicator are 
combined by weight to output the prediction results. 
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II. LITERATURE SURVEY 
A hybrid model called Artificial Neural Network (ANN) optimized by Artificial Bee Colony (ABC) [6] model was proposed for 
software defect prediction. In this model, a cost-sensitivity feature was added to ANN by using a parametric fitness function. A 
trade-off was made between the classification performance of majority and minority classes by the change of cost coefficients. 
However, the ANN is hardware dependence.  
A multi-objective optimization based supervised method called MULTI [7]was proposed to build Just-In-Time Software Defect 
Prediction (JIT-SDP) models. In MULTI, JIT-SDP was formalized as a multi-objective optimization problem. One of the multi-
objectives was designed to maximize the number of identified buggy changes and another multi-objective was designed to reduce 
the efforts in software quality assurance activities. But there was a conflict between these two objectives. MULTI utilized logistic 
regression and NSGA-II to build the models and to generate a set of non-dominated solutions respectively. However, this method is 
not more effective.  
A Software Defect Prediction Model Learning Problem (SDPMLP) [8] was proposed for software defect prediction. In SDPMLP 
model, classification model was employed to select appropriate relevant inputs from a large volume of input and learned the 
classification function. SDPMLP model was a combinatorial optimization problem with factorial complexity and proposed two 
hybrid exhaustive search and Probabilistic Neural Network (PNN) and Simulated Annealing (SA) and PNN procedures to solve it. 
For small size, SDPMLP model was performed well and it provided an optimal solution. But for small size, the use of exhaustive 
search PNN approach was not pragmatic and only the SA–PNN was allowed to solve the SDPMLP in a practical time limit. 
A general framework [9] was proposed for software defect prediction. This framework was consisted of scheme evaluation and 
defect prediction components. The scheme evaluation analyzed the prediction performance of competing learning schemes for given 
historical data sets. The defect predictor built models according to the evaluated learning scheme and predicted software defects 
with new data according to the constructed model. But this framework is little conservative.  
A learning-to-rank approach [10] was proposed to predict the exact number of defects in software. This approach constructed 
software defect prediction model by directly optimizing the ranking performance. This approach was processed in two aspects are 
one is a novel application of the learning-to-rank approach to real world data sets for software defect prediction and the other is a 
comprehensive evaluation and compared the learning-to-rank method with other algorithms which was used to predict the order of 
software modules according to the predicted number of defects. However, this approach is more effective.  

 
III. PROPOSED METHODOLOGY 

In this paper, Cost Effective- Dynamic Partitioning Strategy-Defect Prediction (CE-DPS-DP) where the dynamic partitioning and 
feedback based defect prediction is integrated to improve the cost effectiveness of software testing. The dynamic partitioning, 
partition the test cases based on feedback information. Then the feedback based defect prediction model includes two closed 
feedback loops. One is the feedback loop during testing and the other is the feedback loop after testing. The first loop consists of 
four components are the predictor, the software under testing and the training data. The predictor produces prediction results for the 
Software Under Testing (SUT). The predicator generates prediction results for the SUT. Then the software parts are arranged in 
descending order of the defect rate according to this result. After that, a fixed number of top software parts are opted as the test set 
and the partitioned test cases by the dynamic partitioning are combined with the test set and it is executed by a test action. At the 
end of test action, the test data generated by test action will be treated as new data and be added into the training data. Finally, a 
modified predictor is constructed through model training algorithm based on the new training data.  
Through the collaboration between the predictor and the test action, the entire STP works in an optimal manner until the test target 
is met. After achieving the test target, the second loop comes next. The test materials produced in whole STP will be collected and 
be recorded in the test library. Their data serve as a part of global data when a new SUT is tested. It should be noted that, in order to 
ensure the data quality used for constructing predictor, the global data should be selected through the global data filter. 

A. DP using feedback from STP 
DP is used code metrics and defect results as the training data for constructing a predictor that is a black box system which is 
reflected the relationship among software metrics and software defects.  
Once the new software parts with metrics are provided for the predictor, the defect outcome of the novel software part is achieved. 
DP researches incorporate two goals: ranking software parts according to defect-proneness and classifying whether or not new 
software parts have defect. It is taken the ranking task as the target of defect prediction since ranking result is more flexible in 
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determining the priority ordering than classification result. For t-DP, there is no interaction between software testing and defect 
prediction during the STP. Once the defect prediction model is established, the prediction results cannot be modified. 
The quality of training data cannot be guaranteed, especially when there is a major deviation between the characteristics of the 
training data and those of the SUT, in which case, adopting defect prediction may lead to worse test performance. To overcome this 
problem, defect prediction with the feedback control approach is combined. Feedback control theory is commonly employed in 
software testing. It can adjust the testing strategy on-line by employing the test results generated during the STP as the feedback to 
guide the subsequent testing work. 
In the feedback-based software testing model, the STP is treated as a control problem, and the testing strategy serves as a controller 
to provide decision for the SUT in order to optimize the test action. The test results generated by the test action are collected as a 
part of historical data, which are treated as feedback information to support the controller. The controller, the SUT, the test action 
and the database constitute a closed feedback loop, increasing the convergence speed of the output variables to the expected values. 
Using the framework, an enhanced feedback-based defect prediction model is proposed with some additional criteria (severity level) 
in order to systematically describe the interaction between defect prediction, guide the software parts selection and the STP in a 
formal manner. 

B. Global data filter 
Global data mainly come from the training data selected from the test library, and also include the local data generated during the 
STP. It is well known that predictor can be constructed based on the rich historical data from other projects to compensate for the 
poor performance caused by the lack of local data in the early test stage. However, the quality of real cross-project data is usually 
unstable. Using the data without filtering to construct the predictor may not be able to achieve the desired effect. The global data 
filter focuses on the selection of training data from the test library and it can effectively improve the quality of global data. 
The filter is a formula for calculating software similarity, and the data with high similarity is retained by adjusting the data filter’s 
threshold of the similarity. The similarity of these sub-items is evaluated; then a comprehensive calculation formula is derived to 
obtain the similarity between other projects and the SUT; finally, the similarity value is used to filter the global data. SUT represents 
the software under test, CP means cross project software, 푛 represents sub-item, and 푆푖푚 indicates the similarity between the CP 
and the SUT. The 푆푖푚_푛푎푚푒[푛] is the similarity of the sub-item 푛. 
For category estimation, 

                                         푆푖푚 [푛] =  1       푆푈푇 [푛] == 퐶푃 [푛]
0                                                 표푡ℎ푒푟푤푖푠푒

                             (1) 

                                              푆푖푚 =  ∗ ∑ 푆푖푚 [푛]                                                        (2) 
To level valuation, 
                                               푆푖푚 [푛] =  1− ∗ |푆푈푇 [푛]− 퐶푃 [푛]|                                        (3) 

                                                    푆푖푚 =  ∗ ∑ 푆푖푚 (푛)                                                              (4) 
To feature estimation, 

                                           푆푖푚 [푛] =  1    푆푈푇 [푛] == 퐶푃 [푛]
0                                          표푡ℎ푒푟푤푖푠푒

                                    (5) 

                                                푆푖푚 =  ∗ ∑ 푆푖푚 [푛]                                                          (6) 
The similarity among the candidate software and the SUT are achieved using, 
                                                           푆푖푚 =  훼 ∗ 푆푖푚 + 훽 ∗ 푆푖푚 + 휒 ∗ 푆푖푚                 (7) 

If the similarity of the candidate software is greater than the threshold, after that the data of software will be chosen as global data. 

C. Determine the severity 
A risk is the chance of damage, injury or loss and is established during the probability of its impact and its occurrence. The standard 
risk system is employed in the proposed approach is using the two factors probability (푃), establishing the likelihood that a failure 
assigned to a risk happens and impact (퐼), deciding the severity of a failure if it occurs in operation. 
A risk exposure 푅 of an arbitrary risk item 푎 is established using the probability 푃 and the impact 퐼, 
                                                                         푅(푎) =  푃(푎) ̥ 퐼(푎)                                                                            (8) 
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So, the risk exposure 푅 denotes a comparable value which determines the risk, that is, an uncertain condition or event which, if it 
happens, has a negative effect on the system. The binary operator  ̥ which connects 푃 푎푛푑 퐼 is the multiplication of two numbers or 
the cross product of two numbers or arbitrary characters.  
In the risk identification step, risk items are identified and a list of risk items covering the whole system under test is compiled. Risk 
items are elements to which tests are assigned and for which the risk exposure is calculated. In the test planning and control step, the 
test plan is defined and controlling that is an ongoing activity in parallel to the other activities in the software test procedure, is 
initiated. In this process, the test plan considers the risk model. 
In the risk-assessment step, the risk-exposure value is calculated and classified for each risk item based on probability and impact 
factors. In the test analysis and design step, a concrete test schedule is defined based on the test plan and a concrete risk 
classification. In the test implementation and execution step, the test schedule is executed. The execution of the test cases is 
determined by their priority and the resource limitations. As an outcome of the test execution, a test log is created. The test 
implementation and execution are typically performed by testers. 
In the test evaluation and reporting step, the test log data is evaluated and a test report is created to support decisions of the test or 
project management. The report emphasizes an estimation of the mitigated risks and the residual risks. The test evaluation and 
reporting are typically performed by a test manager. In the test closure activities step, experiences from the actual test project are 
evaluated. The test closure is a very important activity to steadily adapt risk-based testing according to the experiences of the test 
organization. The test closure activities are typically led by a test manager. 

D. Feedback based integrated prediction (FIP) approach with Severity level 
The proposed approach is assumed the difference among the local data source and the global data source and adopted a 
distinguished treatment strategy. Local predictor is trained on the local data and global predictor is constructed on the global data. 
Two predictors are used to predict the defect-proneness of software parts. In addition, severity level is also considered for software 
parts selection. After that, the final prediction results are integrated by weight. The proposed approach is to utilize the local data 
generated during the STP, so as to improve the prediction accuracy.  
The local data are more valuable than the external filtered data and should be paid more attention since it directly comes from the 
SUT. A common practice is to give the local data a larger weight and generate a predictor with the external filtered data. However, 
if the external data have too large proportion in the integrated data, the local data with high weight can still be overwhelmed due to 
the imbalance in the amount of data. As a result, the characteristics of the software defect cannot be reflected by the prediction 
model. Therefore, the local data is used to construct a predictor alone. By allocating weights directly to the predictors rather than the 
data, the local data can get a larger proportion. 
1) Algorithm: CE-DPS-DP Approach 
a) Set test time 푡 =  0. Initialize local data 퐷 = 푁푈퐿퐿, software parts 푆 = 푆푈푇, global data 퐷 = 퐹푖푙푡푒푟(퐿푖푏푟푎푟푦) 
b) Preprocess 퐷  푎푛푑 퐷  
c) Utilize the Linear Regression Model for constructing local predictor 푀표푑푒푙_퐿 using local data and global predictor 푀표푑푒푙_퐺 

using global data 
d) Employ 푀표푑푒푙  푎푛푑 푀표푑푒푙  for predicting the defect-proneness of software parts in SUT at time t 푆( ) and achieve the 

outcomes local defect probability at time t 푃( ) and global defect probability at time t 푃( ) 
e) Use risk based testing approach for predicting risk exposure 푅퐸 and obtains risk exposure probability at time t 푃( ) 
f) Normalize 푃( ),푃( ) 푎푛푑 푃( ) 

                                                                    
푃( )(푖) =  푃( )(푖) ∑ 푃( )(푖)
푃( )(푖) =  푃( )(푖) ∑ 푃( )(푖)
푃( )(푖) =  푃( )(푖) ∑ 푃( )(푖)

                                                     (9) 

In the above equation, 푚 denotes the whole number of software parts in 푆  and 푖 indicates the 푖 − 푡ℎ software module 
g) Update weight of global predictor at time t 휔( ) and weight of the local predictor 휔( ) 

                                                                          휔( ) =  ∗ (푠푡푎푡푒)  푠푡푎푡푒 < 푅
푊                     푠푡푎푡푒 ≥ 푅

                                           (10) 

                                                                          휔( ) = 1− 휔( )                                                                        (11) 
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In the above equation, 푠푡푎푡푒 denotes the proportion of tested software parts, 푊 indicates weight of threshold and 푅 represents ratio 
threshold 
h) Obtain the integrated defect proneness 푃( ) =  휔 ∗ 푃( ) + 휔 ∗ 푃( ) + 푃( ) 
i) Rank integrated defect probability at time t 푃( ) and choose the top 퐾 (test steps of test action) parts from 푆  as the test set 푆  

(software parts under test), 푆 = 푆 −  푆  
j) Include the test case generated by dynamic algorithm with 푆  and represented as 푆  
k) Test  푆  and output 퐷  
l) Update the local and global data, 퐷 = 퐷 +  퐷   푎푛푑 퐷 = 퐷 + 퐷 , respectively 
m) 푡 = 푡 + 1 
n) If the test target is obtained, after that result the local data 퐷 ; else go to step 2. 

 
IV. RESULT AND DISCUSSION 

In this section, the performance of the existing Cost Effective- Dynamic Partitioning Strategy (CE-DPS) and proposed CE-DPS-
Defect Prediction (CE-DPS-DP) is analyzed in terms of mean, median and standard deviation. The experiment is carried out in both 
small and large subject programs are SPACE, SED and GREP. The following Table 1 defines the SPACE, SED and GREP 
programs.  

TABLE I  
PROGRAM DEFINITION  

Programs No. of Lines Coding Language No. of functions  
SPACE 6,199 C code 136 

SED 14,427 C code 255 
GREP 10,068 C code 146 

 
                                                     (a)                                                                     (b)                                                             (c) 

Fig. 1 Experimental results. (a) Results of Experiments with SPACE, (b) Results of Experiments with SED, (c) Results of 
Experiments with GREP  

For each algorithm and each program, the experiment has been repeated 1000 times and the mean, median and standard deviation 
data have been calculated. Fig. 1a, 1b and 1c  show the comparison between CE-DPS and CE-DPS-DP in terms of mean, median 
and standard deviation for SPACE, SED and GREP respectively. The comparison metrics are represented in X axis and range of 
mean, median and standard deviation is represented in Y axis. From Fig.1 it is understand that the proposed CE-DPS-DP has better 
mean, median and standard deviation than CE-DPS for SPACE, SED and GREP programs.  

V. CONCLUSION 
A Cost Effective- Dynamic Partitioning Strategy-Defect Prediction (CE-DPS-DP) is proposed for an efficient cost-effective 
software testing. It consists of two processes are dynamic partitioning and feedback based defect prediction. In dynamic partitioning 
process, the test cases are partitioned based on online feedback. In feedback based defect prediction process, the defects in the 
software are predicted by using local and global predictor where the partitioned test cases by dynamic partitioning are used. The 
experimental results show that the proposed CE-DPS-DP has better mean, median and standard deviation than the conventional 
method.  
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