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I. INTRODUCTION 
The fixed point theorem  is core part of  nonlinear functional analysis and  originated in the works of  Schauder[18], Banas[`18], 
Tarski[18], Deimling [6], Zeidler[18]. A fixed point theorems  are useful for applications to other areas of mathematics such as 
theory of differential and integral equations, approximation and optimization theory, control theory, economics and game theory is 
classified as applicable fixed point theorems.  
Most of applications of the fixed point theorems to nonlinear problems of any dynamical systems are existential in nature. However, 
now it is clear that the fixed point theorems is also useful in obtaining the different characterizations of the solutions. In Heikkila 
and Lakshmikantham[15],  , Burton and Zhag[5],  , Banas and Dhage[2],  .The nature of nonlinearities involved in a differential 
equation, a fixed point theorem is used to prove the existence of solutions for equivalent operator equation which implies the 
existence results for the functional differential equations. 
In this paper, we characterize the solutions of some nonlinear functional differential equations through applicable classical and 
hybrid fixed point theorems in abstract spaces. We claim that our results are new to the theory of nonlinear functional differential 
equations on unbounded intervals. 

II. FUNCTIONAL DIFFERENTIAL EQUATIONS 
In this article, we discuss three types of nonlinear functional differential equations on unbounded intervals of real line for existence 
as well as for some characterizations of the solutions via classical fixed point theorems in Banach spaces. 
Let R be the real line and let R be set of nonnegative real numbers. Let 0 [ ,0]I   be a closed and bounded interval in R  for 

some real number 0   and let 0J I R  Let C denote the Banach space of continuous real-valuied functions   on 0I with 

the supremum norm . C  defined by  

                                                                            
0

sup | ( ) |
C

t I
t 


  

Clearly, C is a Banach space with this supremum norm. For a fixed  t R , let tx denote the element of C defined by 

( ) ( ), [ ,0].tx x t        

The space C is called the history space of the past interval 0I  for the functional differential equations to describing the past history 

of the problems in question. 
Let  ( )CRB R denote the class of functions : {0}a R R   satisfying the following properties: 

1) a  is continuous, 
2) lim ( ) ,

t
a t


 and 

3) a(0) = 1. 
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There do exist functions satisfying the above conditions. In fact, if 1 2( ) 1, ( ) ,ta t t a t e   , then 1 2, ( ).a a CRB R  Again, 

the class of continuous and strictly monotone functions : {0} (0) 1a R R with a     satisfy the above criteria. Note that if 

( ),a CRB R then the reciprocal function :a R R   defined by 
1:( )
( )

a t
a t

  is continuous and lim ( ) 0.
t

a t



  

Consider the following functional differential equation, 
 

            [ ( ) ( )] ( , ( ), ) ( , ( ), ) . .t t
d a t x t f t x t x g t x t x a e t R
dt            (2.1)   

      0x      

Where, ( ) , : .a CRB R and f g R R C R      With given a function C .  

It is clear that the functional differential equation (FDE) (1.2.1)the scalar perturbations of second kind for the following nonlinear 
first order FDE on unbounded interval, 

    
0

( ) ( , ( ), ) . .tx t g t x t x a e t R
x 

 


             (2.2)  

The  functional differential equation (2.1) are new to the theory of nonlinear differential equations and some special cases of these 
functional differential equations with ܽ ≡ 1 have  been studied in the literature on closed and bounded intervals for various aspects 
of the solutions. However,  functional differential equations (2.1) is not discussed  literature on unbounded intervals of real line.  
In this paper, we discuss the above mentioned functional differential equations for existence as well as for different characterizations 
of the solutions such as attractivity, asymptotic attractivity and ultimate positivity of the solutions.  

III. FIXED POINT THEORY 
Let X be a nonempty set and let T : ܺ → ܺ. An invariant point under T in X is called a fixed point of T, that is, the fixed points are 
the solutions of the functional equation T ݔ =  Any statement asserting the existence of fixed point of the mapping T is called .ݔ
fixed point theorem for the mapping T in X. The fixed point theorems are obtained by imposing the conditions on T or on X or on 
both T and X. By experience, better the mapping T or X, we have better fixed point principles. As we go on adding richer structure 
to the non-empty set X, we derive richer fixed point theorems useful for applications to different areas of mathematics and 
particularly to nonlinear differential and integral equations.  
we  give some fixed point theorems useful in establishing the attrratctivity and ultimate positivity of the solutions for functional 
differential equations  (1.2.1) on unbounded intervals. 
  we give some basic part. 

Let X be an infinite dimensional Banach space with the norm . . A mapping Q :  ܺ → ܺ is called D-Lipschitz if there is a 

continuous and nondecreasing function :R R    satisfying 

                                    ( )Qx Qy x y    

for all , ,x y X where (0) 0.   If ( ) , 0,r k r k   then Q is called Lipschitz with the Lipschitz constant k. In particular, if 

k<1, then Q is called a contraction on X with the contraction constant k. Further, if ( ) 0,r r for r    then Q is called nonlinear 
D-contraction and the function ∅ is called D-function of Q on X. There do exist D-functions and the commonly used D-functions 

are ( ) ( ) ,
1

rr k r and r
r

  


 etc.   

A. Main Result 
 Theorem 3.1. (Granas and Dugundji) [13]. Let S be a non-empty, closed, convex and bounded subset of the Banach space X and let

:Q S S  be a continuous and compact operator. Then the operator equation  Q x x  has a solution in S. 

Theorem 3.2. (Dhage[10]). Let S be a closed, convex and bounded subset of the Banach space X and let :A X X    and 

:B S X   be two operators such that  
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1) A is nonlinear D-contraction, 
2) B is completely continuous, 
3) .x Ax By x S for all y S      
Then the operator equation  
   Ax Bx x   has a solution in S. 
Theorem 3.3. (Dhage[10]). Let S be a non-empty, closed convex and bounded subset of the Banach algebra X and Let

: :A X X and B S X   be two operators such that  
a) A is D-Lipschitz with D-function ߰, 
b) B is completely continuous, 
c) ,x Ax By x S for all y S and     

d) ( ) , ( ) sup{ : }.M t r where M B S Bx x S      

               Then the operator equation 
   Ax Bx x         
                                 has a solution in S. 
A collection of a good number of applicable fixed point theorems may be found in the monographs of Granas and Dugundji [13], 
Deimling [6], Zeidler [18] and the references therein. In the following ,different types of characterizations of the solutions for 
nonlinear functional differential equations on unbounded intervals of real line. 

IV. CHARACTERIZATIONS OF SOLUTIONS 
We seek the solutions of the FDEs (2.1) in the space 0( , )BC I R R of continuous and bounded real-valued functions defined on 

0I R  Define a standard supremum norm .  and a multiplication “ . ” in BC 0( , )I R R by  

    
0

sup | ( ) | ( ) ( ) ( ) ( ) , .
t I R

x x t and xy t x t y t t R



 

    

Clearly, BC 0( , )I R R becomes a Banach algebra with respect to the above norm and the multiplication in it. By 1( , )L R R  we 

denote the space of lebesgue integrable functions on R and the norm 1 1. ( , )L in L R R  is defined by 

     1

0
| ( ) | .x L x t ds


   

In order to introduce further concepts used in this paper, let us assume that ܧ = 0( , )BC I R R and let Ω be a non-empty subset 

of X. Let Q : ܧ →                                                                   be a operator and consider the following operator equation in E ܧ
( ) ( )Qx t x t               (4.1) 

for all 0 .t I R   Below we give different characterizations of the solutions for the operator equation (2.4.1) in the space 

0( , )BC I R R  

Definition 4.1. We say that solutions of the operator equation (2.4.1) are locally attractive if there exists a closed ball 0( )rB x in the 

space 0( , )BC I R R  for some 0 0( , )x BC I R R  such that for arbitrary solutions ( ) ( )x x t and y y t  of equation (4.1) 

belonging to 0( )rB x  we have that  

                               lim( ( ) ( )) 0
t

x t y t


 
                  

(4.2) 

In the case when the limit (4.2) is uniform with respect to the set 0( )rB x , i.e., when for each ∈> 0 there exists T >0 such that 

    | ( ) ( ))x t y t                          (4.3)  
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for all 0 ∋ ݕ,ݔ( )rB x  being solutions of (4.1) and for ݐ ≥ ܶ, we will say that solutions of equation (4.1) are uniformly locally 

attractive on 0 .I R  

Definition.4.2. A solution ݔ = ݕ of equation (1.4.1) is said to be globally attractive if (4.2) holds for each solution (ݐ)ݔ =  of (ݐ)ݕ
(4.1) in 0( , )BC I R R . In other words, we may say that solutions of the equation (1.4.1) are globally attractive if for arbitrary 

solutions x(t) and y(t) of (2.4.1) in 0( , )BC I R R The condition (1.4.2) is satisfied. In the case when the condition (4.2) is 

satisfied uniformly with respect to the space 0( , )BC I R R i.e., if for every ∈>0 there exists T>0 such that the inequality (1.4.2) 

is satisfied for al x,y,∈ 0( , )BC I R R  being the solutions of (4.1) and for ݅ ≥ ܶ, we will say that solutions of the equation (4.1) 

are uniformly globally attractive on 0 .I R  

Now we introduce the new concept of local and global ultimate positivity of the solutions for the operator equation (4.1) in the space 

0( , )BC I R R  

Definition4.3 . A solution x  of the equation (4.1) is called locally ultimately positive if there exists a closed ball 0( )rB x  in the 

space 0( , )BC I R R  for some ݔ଴ ,∈ 0( , )BC I R R  such that ݔ ∈ 0( )rB x  and  

     lim | ( ) | ( ) 0.
t

x t x t


 
                       

(4.4) 

In the case when the limit (4.4) is uniform with respect to the solution set of the operator equation (1.4.1) in 0( , )BC I R R  i.e., 

when for each ∈ > 0 there exists T > 0 such that 

    | ( ) | ( ) |x t x t                         (4.5) 

for all x  being solutions of (4.1) in 0( , )BC I R R and for ݐ ≥ ܶ, we will say that solutions of equation (4.1) are uniformly 

locally ultimately positive on R  

Definition 4.4. A solution ݔ ∈ 0( , )BC I R R of the equation (1.4.1) is called globally ultimately positive if (1.4.4)  is satisfied. 

In the case when the limit (1.4.5) is uniform with respect to the solution set of the operator equation (1.4.1) in 0( , )BC I R R i.e., 

when for each ∈ > 0 there exists T > 0 such that (4.5) is satisfied for all x  being solutions of (1.4.1) in 0( , )BC I R R and for 

≤ ݐ ܶ, we will say that solutions of equation (4.1) are uniformly globally ultimately positive on 0I R  

V. ATTRACTIVITY AND POSITIVITY RESULTS 
In this section, we prove the global attractivity and positivity results for the FDE (1.2.1) on 0I R  under some suitable 

conditions. Let I be a closed interval in R and let ( , )AC I R  be the space of functions which are defined and absolutely continuous 

on I. As every absolutely continuous function is continuous on I, we have that ( , ) ( , )AC I R C I R However, converse 

implication may not hold. It is also known that if  ∈ ( , )AC I R , then it is almost everywhere differentiable on I. First we prove the 

global attractivity and ultimate positivity results for the FDE (2.1) on 0I R . 

First we discuss the FDE (2.1) for attractivity characterization of the solutions on unbounded interval 0I R . We need the 

following definitions in the sequel. 
Definition 5.1. By a solution for the functional differential equation (2.1) we mean a function              
 0( , ) ( , )x BC I R R AC R R    such that 

1) The function ( ) ( )t a t x t  is absolutely continuous on R , and  

2) x  satisfies the equations in (2.1), 
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Where ( , )AC R R  is the space of absolutely continuous real-valued functions on right half real axis R . 

Definition 5.2. A function : R R C R      is called caratheodory if 

a) ( , , )t t x y is measurable for all ,x R and y C and   

b) ( , ) ( , , )x y t x y  is continuous for all t R . 

We need the following hypotheses . 
There exists a continuous function h : R .(ଵܣ) R  such that 

| ( , , ) | ( ) . .g t x y h t a e t R   

 for all x R  and y C . Moreover, we assume that 
0

lim| ( ) | ( ) 0
t

t
a t h s ds


  

2( ). (0) 0A   . 

Theorem 5.1. Assume that the hypotheses (ܣଵ) holds. Then the FDE (2.1) has a solution and solutions are uniformly globally 
attractive on 0I R  . 

Proof. Set 0( , )X BC I R R  .Define an operator Q on X by  

0 0

0

(0) ( ) ( ) ( , ( ), ) ( , ( ), )
( )

( ),

t t

s sa t a t f s x s x ds g s x s x ds if t R
Qx t

t if t I






        
 

 
(5.1) 

We show that Q defines a mapping : .Q X X let x X be arbitrary. Obviously, Q x  is a continuous function on 0I R . We 

show that Q x  is bounded on 0I R Thus, ift R , then we obtain: 

0
| ( ) | | (0) | | ( ) | | ( ) | | ( , ( ), ) ( , ( ), ) |

t

s sQx t a t a t f s x s x g s x s x ds  

0
| ( ) | | (0) | | ( ) | ( ) .

t
Qx t a a t h s ds    

Since 
0

lim | ( ) | ( ) 0,
t

t a t h s ds  and the function :w R R  defined by 
0

( ) | ( ) | ( )
t

w t a t h s ds   is continuous, there is 

constant W > 0 such that 

00 0
sup ( ) sup | ( ) | ( ) .

t

t t
w t a t h s ds W

 
   

Therefore, 

    | ( ) | | (0) |Qx t a W a W      

for all t R . Similarly, if 0t I then | ( ) | .Qx t   As a result, we have that  

   ( 1)Qx a W                                                           (5.2) 

for all ݔ ∈ ܺ  and therefore, Q maps X into  X itself. Define a closed ball (0)rB  centered at origin of radius r, where

( 1)r a    W. Clearly Q defines a mapping : (0)rQ X B  and in particular : (0) (0).r rQ B B  We show that Q 

satisfies all the conditions of Theorem 3.1. First, we show that Q is continuous on (0)rB . To do this, let us fix arbitrarily 0  

and let { }nx be a sequence of points in (0)rB  converging to a point  ∈ (0)rB . Then  we get 

0

| ( , ( ), ( )) ( , ( ), ( )) |
| ( )( ) ( )( ) | | ( ) | |

| ( , ( ), ( )) ( , ( ), ( )) |
t n n

n
n n

f s x s x s f s x s x s
Qx t Qx t a t ds

g s x s x s g s x s x s
 
 
    

      
  
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 
 0

| ( , ( ), ( )) ( , ( ), ( )) |
| ( ) | |

| ( , ( ), ( )) ( , ( ), ( )) |
t n n

n n

f s x s x s f s x s x s
a t ds

g s x s x s g s x s x s

 

 

       
    

  

                                                        
0

2 | ( ) | ( )
t

a t h s ds   

                                                       2 ( )w t                                                                    (5.3)

 

Hence, by virtue of hypothesis (ܣଵ), we infer that there exists a T >0 such that ( )w t   at t T  . Thus, for t T from the 
estimate (5.2) we derive that 

| ( )( ) ( )( ) | 2nQ x t Q x t as n     

Furthermore, let us assume that [ 0 , ]t T . Then, following arguments similar to those given in Dhage [2] and Ntouyas [17], by 
Lebesgue dominated convergence theorem, we obtain the estimate: 

 
0

lim ( ) lim (0) ( ) ( ) ( , ( ), ( )) ( , ( ), ( ) |
t

n n n n nn n
Qx t a t a t f s x s x s g s x s x s ds  

 

         

 
0

(0) ( ) ( ) lim ( , ( ), ( )) ( , ( ), ( )
t

n n n nn
a t a t f s x s x s g s x s x s ds  


       ( )Qx t

 
for all ݐ ∈ [0,ܶ].similarly, if ݐ ∈  ଴ thenܫ

lim ( ) ( ) ( )nn
Qx t t Qx t


   

Thus, nQ x Q x as n  uniformly on R  and hence Q  is a continuous operator on (0)rB  into (0)rB . 

 Next, we show that B is compact operator on (0)rB . To finish this, it is enough to show that every sequence { }nQ x  in 

( (0) )rQ B


has a cauchy subsequence. Now,  

0
( ) (0) ( ) ( ) ( , ( ), ( )) ( , ( ), ( )

t

n n n n nQx t a t a t f s x s x s g s x s x s ds        

           
( 1)| (0) | ( )

( 1)| ( )

a w t

a w t





  

  
                                                              (5.4) 

For all t R .Taking supremum over t , we obtain 

|| || (|| || 1) || ||nQx a W    

for all n N .  This shows that {ܳݔ௡} is a uniformly bounded sequence in ( (0) )rQ B


. 

 Next, we show that ( (0) )rQ B


 is also an equicontinuous set in X. Let ∈> 0 be given. Since lim ( ) 0t w t  , there is a 

real number 1 0T   such that ( )
8

w t 
  for all 1t T . Similarly, since lim ( ) 0,

t
a t


 for above 0  there is a real number 

2 0T  such that | ( ) |
8 | (0) |

a t



  for all t T . Thus, if ܶ = max{ ଵܶ , ଶܶ} , |(ݐ)ݓ| ℎ݁݊ݐ < ∈
଼
 and | തܽ(ݐ)| < ∈

଼|∅(଴)|
≤ ݐ ݈݈ܽ ݎ݋݂ 

t,0  ݐ݁ܮ.ܶ I R   ,   be arbitrary, if 0,t I  then by uniform countinuity of  0on I  ,for above ∈ we have a  ߜଵ > 0 which is 

a function of only ∈ such that 

                    
1| | | ( ) ( ) | | ( ) ( ) |

4n nt Qx t Qx t      
        

for all ݊ ∈ ܰ. ,ݐ ݂ܫ ߬ ∈ [0,ܶ], then we have 
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| ( ) ( ) | | (0) | | ( ) ( ) |n nQx t Qx a t a      

0 0

0 0

| ( ) | ( , ( ), ( )) ( ) ( , ( ), ( ))

| ( ) | ( , ( ), ( )) ( ) ( , ( ), ( ))

t

n n n n

t

n n n n

a t f s x s x s ds a f s x s x s ds

a t g s x s x s ds a g s x s x s ds





  

  

   

  

 

 
                                              

       | (0) | | ( ) ( ) |a t a    

       

0 0

0 0

0 0

0

( ) ( , ( ), ( )) ( ) ( , ( ), ( ))

( ) ( , ( ), ( )) ( ) ( , ( ), ( ))
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t
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t
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
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   
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  
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 

 

 
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
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a g s x s x s ds

   

   

 

    

    

 


 
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                        1

0

0

| (0) | | ( ) ( ) | | ( ) ( ) | ( ) ( )

| (0) | | ( ) ( ) | | ( ) ( ) | ( ) | ( ) ( ) |
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T

L

a t a a t a h s ds a h s ds
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
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  

    

     
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 



 

Where, 1
0 0

( ) ( ) ( ) .
t

L
p t h s ds and h h s ds


    

By the uniform continuity of the functions തܽ and p on [0,T], for above ∈ we have the real numbers ߜଶ > ଷߜ ݀݊ܽ 0 > 0 which are the 
functions of only ∈ such that 

1

2| | | ( ) ( ) |
8 | (0) |

L

t a t a
h

  



    

  
 

and  

3| | | ( ) ( ) |
8

t p t p
a

  


      

ସߜ ݐ݁ܮ = min{ߜଶ,ߜଷ}.Then 

   4| | | ( ) ( ) |
4n nt Qx t Qx   

      

for all ݊ ∈ ܰ. similarly, if ݐ ∈ ଴ܽ݊݀ ܫ  ∈ [0,ܶ],  ℎ݁݊ݐ

| ( ) ( ) | | ( ) (0) | | (0) ( ) |n n n n n nQx t Qx Qx t Qx Qx Qx       

Take ߜହ = min{ߜଵ,ߜସ} > 0 which is again a function of only ∈. Hence by above estimated facts it follows that 

5| | | ( ) ( ) |
2n nt Qx t Qx   

      
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for all ݊ ∈ ܰ 
Again, if ݐ, ߬ > ܶ,  then we have a real number ߜ଺ > 0 which is a function of only ∈ such that 

0 0

0 0

| ( ) ( ) | | (0) | | ( ) ( ) |

( ) ( , ( ), ( )) ( ) ( , ( ), ( ))

( ) ( , ( ), ( )) ( ) ( , ( ), ( ))

| (0) || ( ) | | (0) || ( ) | ( ) ( )

4 4
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t

n n n n

t

n n n n

Qx t Qx a t a

a t f s x s x s ds a t f s x s x s ds

a t g s x s x s ds a t g s x s x s ds

a t a w t w





  

 

 

   

  

   

   

   
 

 

 
   

For all ݊ ∈ ܰ,  whenever ݐ − ߬| < ,ݕ݈ݎ݈ܽ݅݉݅ݏ.଺ߜ ,ݐ ݂݅ ߬ ∈ ଴ܫ ∪ ܴା with < ܶ < ߬, then we have 

                | ( ) ( ) | | ( ) ( ) | | ( ) ( ) | .n n n n n nQx t Qx Qx t Qx T Qx T Qx       

Take ߜ = min{ߜହ,ߜ଺} > 0 which is again a function of only ∈. Therefore, from the above obtained estimates, it follows that 

             
| ( ) ( ) | | ( ) ( ) |

2 2n n n nQx t Qx T and Qx T Qx  
     

For all ݊ ∈ ܰ, whenever ݐ − ߬| < −(ݐ)௡ݔܳ ,As a result .ߜ |(߬)௡ݔܳ <∈ for all 

,ݐ ߬ ∈ ଴ܫ   ∪  ܴା ܽ݊݀ ݂ݎ݋ ݈݈ܽ ݊ ∈ ݎ݁ݒℎ݁݊݁ݓ,ܰ t   . This shows that {ܳݔ௡} is equicontinuous sequence in X. Now an 

application of Arzela-Ascoli theorem yields that {ܳݔ௡} has a uniformly convergent subsequence on the compact subset ܫ଴ ∪ [0,ܶ] 
of ܫ଴ ∪ ܴ .Without loss of generality, call the subsequence to be the sequence itself. 
We show that {ܳݔ௡} is Cauchy in X. Now |ܳݔ௡(ݐ)− |(ݐ)ݔܳ → ݊ ݏܽ  0 → ∋ ݐ ݈݈ܽ ݎ݋݂ ∞ ଴ܫ  ∪ [0,ܶ]. then for given ∈ > 0 there 
exits an ݊଴ ∈ ܰ such that 

                             

0

0

sup | ( ) | | ( , ( ), ( )) ( , ( ), ( ))

| ( , ( ), ( )) ( , ( ), ( )) |
2

p
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p T

p
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a p f s x s x s f s x s x s

g s x s x s g s x s x s ds


 

 

  

      
      




 

for all ݉,݊ ≥  ݊଴. Therefore, if ݉,݊ ≥  ݊଴, then we have 

0

0

| ( , ( ), ( )) ( , ( ), ( ))
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   

   
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

0
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a p
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 

 

     
    



 

.

 

This shows that {ܳݔ௡} ⊂ ܳ൫ܤ௥(0)തതതതതതത൯ ⊂ ܺ is Cauchy. Since X is complete, {ܳݔ௡} converges to a point in X. As ܳ(ܤ௥തതത(0)) is closed 
 ത௥(0)൯ is relatively compact and consequently Q is a continuous and compactܤHence Q൫ .(ത௥(0)ܤ)ܳ converges to a point in {௡ݔܳ}
operator on ܤത௥(0) into itself, Now an application of theorem 3.2 to the operator Q on ܤ௥തതത(0) `yields  that Q has a fixed point in ܤ௥തതത(0) 
which further implies that the FDE (2.1) has a solution defined on ܫ଴ ∪ ܴା. 

Finally, we show that the solutions are uniformly attravtive on ܫ଴ ∪ ܴା. Let ݔ, ݕ ∈  ത௥(0) be any two solutions the FDEܤ 
(4.1) defined on ܫ଴  ∪  ܴା. Then, 
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   | ( ) ( ) |x t y t    
0 0 0 0

[ ( ) ( , ( ), ) ( ) ( , ( ), ) ] [ ( ) ( , ( ), ) ( ) ( , ( ), ) ]
t t t t

s s s sa t f s x s x ds a t f s y s y ds a t g s x s x ds a t g s y s y ds                                 

0 0
| ( ) | ( , ( ), ) | ( ) | ( , ( ), )

t t

s sa t f s x s x ds a t f s x s x ds     

                                
0 0

| ( ) | ( , ( ), ) | ( ) | ( , ( ), )
t t

s sa t g s x s x ds a t g s x s x ds 
                  2 ( )w t                                                        (1.5.5) 

For   all ݐ ∈ ଴ܫ ∪ ܴା. Since lim௧→ஶ(ݐ)ݓ = 0, there is a real number T>0 such that 
(ݐ)ݓ <  ∈

ଶ
≤ ݐ ݈݈ܽ ݎ݋݂  ܶ. ,݁ݎ݋݂݁ݎℎ݁ݐ (ݐ)ݔ| − |(ݐ)ݕ  ≤ ∈ ≤ ݐ ݈݈ܽ ݎ݋݂ ܶ, and so all the solutions of the FDE (2.2.1) are uniformly 

globally attractive on ܫ଴ ∪ ܴା. 
Theorem 5.2. Assume that the hypotheses (ܣଵ) – (ܣଶ) hold. Then the FDE (2.1) has a solution and solutions are uniformly globally 
attractive and ultimately positive on ܫ଴ ∪  ܴା. 
Proof. By Theorem 5.1, the FDE (1.2.1) has a solution in ܤ௥തതത(0),ݓℎ݁ݎ ݁ݎ = ||∅|| +ܹ and the solutions are uniformly globally 
attractive on ܫ଴ ∪ ܴା. We know that for any ݔ, ∋ ݕ ܴ, one has the inequality. 

                                                         | | | | | | ,x y x y x y      
And, therefore, 

                  || | ( ) | | | | | | ( ) | || | | || | |x y s y x y x y x x y y                               (5.6) 

for all ݕ,ݔ ∈ ܴ. Now for any solution ݔ ∈  ௥തതത(0), one hasܤ 
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 

 
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 
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0 0
| ( ) | ( , ( ), ) | | ( ) | ( , ( ), ) |

t t

s sa t g s x s x ds a t g s x s x ds 

 

2 ( ).w t  
Since lim௧→ஶ(ݐ)ݓ = 0, there is a real number T > 0 such that ||(ݐ)ݔ|−≤ ∈ for all ݐ ≥ ܶ. Hence solutions of the FDE (2.1) are also 
uniformly globally ultimately Positive on ܫ଴ ∪ ܴା. This completes the proof.  

VI. EXAMPLE 
Let ܫ଴ = [− గ

ଶ
, 0] be a closed and bounded interval in R and define a function ∅ ∶ ଴ܫ → ܴ by ∅(ݐ) =  consider the following .ݐݏ݋ܿ

FDE, 
  

0

( ( ) ) ( )( ( ) ) ' . .
| ( ) | | | | | | ( ) | | | | |

,

t t tt

t t

x t x x te x t e e a e t R
x t x c x t x c

x 

 



  

 



 

 

Where, 1

0
( , ) ( , ) lim 0

tt t s

t
e C R R L R R and e e ds  

  
    

Here, ( ) ta t e which is positive and increasing on R  and so ( )a CRB R and 

 
0 0

|| || sup ( ) sup 1.t

t t
a a t e

 
    

Again, 
( ) ( )( , , ) , ( , , ) , .

| | || || | ( ) | || ||

t
t

t

e x y x tf t x y g t x y e for t R x R and y C
x y c x t x c







    
 

Clearly, the function g satisfies 

the hypothesis (ܣଵ) with growth function
0

( ) lim ( ) lim 0.
tt t s

t t
h t e on R sothat w t e e ds  

  
    Now we apply theorem  5.1. to 
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FDE (2.1) to conclude that it has solution and solutions are uniformly globally attractive on 0 .I R  As (0) 1 0,    

,  of Theorem 1.5.2. is satisfied. Hence, solutions of the given FDE are also uniformly globally ultimately (ଶܣ) ݏ݅ݏℎ݁ݐ݋݌ݕℎ݁ ℎݐ
positive on 0 .I R  
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