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L. DESCRIPTION OF THE PROBLEM
Consider the first order random differential inclusions with boundary condtions

y'(t,w) e F(t,w, y(t,w)), for aeted =[0,T],weQ
L(y(0,0),y(T,®))=0

Where F : J xQ xR — 2% is a compact and convex valued multivalued map and L:R?xQ — R is a continuous single-

valued map.

The method of upper and lower solutions has been successfully applied to study the existence of multiple solutions for initial and
boundary value problems of first and second order differential inclusions. This method has been used in Bernfeld-Lakshmikantham
[10], Heikkila-Laksmikanthan [8], Carl-Heikkila-Kumpulainen [5], Cabada [4], Frigon [7], Lakshmikanthan-Leela [17], Nkashama
[13].

The problem(1.1)is new to the differential inclusions. In this paper, we establish an existence result for (1.1) through the existence
of upper and lower random solutions and random fixed point theorem for condensing maps of Martelli[19].

(1.1)

1. AUXILIARY RESULTS
We will need some basic definitions and Lemmas from multivalued analysis.

1) Definition 2.1.A multivalued map F : J x Rx Q — 2% issaid to be an L'- random caratheodory , if
a) t— F(t,y,w) ismeasurable foreachy e R, 0 € Q.
b) y— F(t,y,®) isupper semicontinuous for almostall te J, ® € Q).

c) Foreach k>0, there existsh, € Ll(\],R+ , Q) such that

|Ft y o)ll=sup{|v]:ve F(t,y,®)}<h (t,o) forall | y [< Kk and for almost all €Q tel.

So let us start by defining what we mean by a solution of problem (1.1).

2) Definition 2.2. A function y € AC(J, R, Q) is said to be a solution of (1.1) ) if there exists a function v e L"(J, R, Q) such
that V(t,w) € F(t, y(t,w), w)ae.on J,y'(t,m) =Vv(t,®w)ae.on J weQand L(y(0,w),y(T,w))=0.

Thefollowing concept of lower and upper solutions for (1.1) has been introduced by Halidias and Papageorgiou in [14] for second
order multivalued boundary value problems.

3) Definition 2.3. A function o € AC(J,R, Q) is said to be a lower solution of (1.1) if there exists V, € L'(J,R,Q) such
that v, (t,w) € F(t,a(t,®),m) on J,a'(t,w) <V, (t,®) ae.on J , @ €Q and
L(a(0,w),a(T,w)) <0.
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Similarly, a function 8 € AC(J,R,Q) is said to be upper solution of (1.1) if there exists V, € L'(J,R,Q) such that
v, (t,m) e F(t, B(t,m),w)ae.on J, B'(t,0) 2V,(t,w)ae.on J weQ and L(B(0,w), B(T,w)) > 0.

1
For the multivalued map F and for each y € C(J,R, Q) we define S v by

SFL={VG L'(J,R,Q):v(t,w) e F(t, y(t,w),w) forae. te J, 0 e Q}
y .

Our main result is based on the following :
a) Lemma2.1.[18]. Let | be a compact real interval and X be a Banch space. Let F: I x X — CC(X);(t,y) = F(t,y)

1
measurable with respect to t for any y € X and u.s.c. with respect to Yy for almost each te | and S—— = ﬂ for any

y e C(l,X) and let I be a linear continuous mapping from L"(1, X) to C(I, X) then the operator
FoSi:C(I , X)—>CC(C(l, X)), y1— (FoSi)(y) ::F[Sij
F F F,y
is a closed graph operator in C(I, X)xC(l, X).
b) Lemma2.2.[19] Let G: X — CC(X) be anu.s.c. condensing map. If the set
M ={ve X :Av e G(v) for some A > 1}

is bounded, then G has a fixed point.

1. MAIN RESULT
We are now in a position to state and prove our existence result for the problem (1.1).
A. Theorem 3.1

Suppose F :JxRxQ — CC(R) isan L'-random Caratheodory multivalued map.
And assume the following conditions.

there exist & and B in W™ (J,R,Q) lower and upper random solutions respectively for the problem (1.1) such that,
a<lp
L is a continuous single-valued map in (X, y) €[a(0), 8(0)]x[a(T), B(T)] and nonincreasing in yela(T), B(T)]
are satisfied. Then the problem (1.1) has at least one random solution y e W' (J, R, Q)
such that
at,w) <yt,0) < pt,o)forallte J, 0.
Proof. Transform the problem into a fixed point problem. Consider the following modified problem
y'tt,o)+yt,m)e F(t y(t, 0),0),aete . (3.2)
y(0,0) =7((0, y(0, ), 0) - L(Y(0,0), Y (T, @))) (32)
Where @ € Q, F(t,y,0) =F(t,0,7(t,y,0))+7(t,y, ®) = max{a(t, w), min{y, B (t, ®)}} and
y(t, o) =1t 0, V¥t o))
Remark(i) Notice that F, is an L* -random Caratheodory multivalued map with compact convex values and there exists

g el'(J,R,,Q) such that
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I F(t y(t, @), 0) |< #(t, ) + max(SUP | a(t, @) |, SUP) | B(t, @) )and all y e C(J, R, ).

ted ted
By the definition of 7 itis clear thata (0, ) < y(0,®) < (0, w).

Clearly a solution to (3.1) — (3.2) is a fixed point of the operator N : C(J, R, Q) — 2°0*?) defined by

N(y):= {h eC(J,R,Q):h(t,®) = y(0, ) +j[v(s, w)+Y(s,0) - y(s,w)]ds,v e SlFiy}

Where

1
Sey={ve SlF_V V(t, ) > v, (t,w)a.e on A and V(t,w) <V, (t,0)ae on A}

SlF'V ={ve l'(J,R,Q):v(t,m) e F(t,V(t,»), ») fora.e. t € J},
A={teld yt,o)<a(t,o0)<pt o)} A ={ted:a(t,o)<plt o)<yt wn)}
Since (i) Foreachy € C(J,R,Q). the set SlF'y is nonempty..
Foreach y € C(J,R,Q). the set SlF'V is nonempty. Indeed, by (i) there exists V € SlF'y_ Set
W=V x, Vs +VIa
Where
A={tel:at,n)<p(t 0}
a
Then by decomposability W € SlF'V

We shall show that N is a completey continuous multivalued map, u.s.c. with convex closed values. The proof will be given in
several steps.

1) Stepl: N(y) is convex for each ¥ € C(J,R,Q).
_ ol ol
Indeed, if h,h belongto N(Y), thenthereexist ve S ¢y and V e S ¢y such that

h(t, ®) = y(0, w) + j[v(s, 0)+Y(s,0)-y(s, 0)ds, tel, 0eQ
And 0
h(t,®) = y(0, w) +j[\7($,co) +Y(5,0)-y(s 0)]ds ,tel,0eQ.
Let 0<k<1. ThenforeachteJ , w e Q. w(;, have
[ kh+(L-K)h ] (t, ) = y(0,0) +j[kv(s, o) +(L-K)V(s, @) + (s, 0) - Y (5, 0) |ds.

nl
Since S ¢y is convex (because F has convex values ) then

kh+(1- k)ﬁ e G(y).
2) Step2: N sends bounded sets into bounded sets inC(J, R, Q)
Let B, ={yeC@J,R,Q):[|yI.<r}, (| yI|l..==sup{| y(t,®)|:t € I, € 3}) be a bounded set in

nl
C(J,R,Q)andy € B,, then for each h e N(y) thereexists ve S ¢y such that
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h(t,®) = y(0, w) + j[v(s, 0)+Y(s,0)-Yy(s,w)]ds,t e J,w Q.
Thus for each t € J we get 0
|h(t,0) <] y(0,0)| +i[l V(s @) [+]Y(s, @) | +]y(s, ) [Ids
<max(a(0,w), B(0,w))+ || &, Il. +T max(y,sup,, | e(t, w)sup,., | B(t, @) ) +Tr.
3) Step3: N sends bounded sets in C(J, R, Q) into equicontinuous sets.

Let u,u, €J,u, <u,,B, ={yeC(J,R,Q):]| y|[.,<r} be abounded setin C(J,R,€2) and

nl
y € B,. Foreach he N(y) there exists Ve S r,y such that

h(t,®) = y(0,w) + j[v(s, 0)+Y(s,w)-y(s,w)]ds ,teJ,weQ.
We then have 0

|h(u,) ~h(w) < [1v(s, @) + T(5,0) | +] y(s,0) lds

< Tl ﬂr (s, )| ds + (u, —u,) max(r,sup,_; | a(t,w)) |,sup,, | B(t,@)[) +r(u, —u,)

As a consequence of Step2, Step 3 together with the Ascoli-Arzela theorem we can conclude that N : C(J, R, Q) — 2°U-R) jg
a compact multivalued map, and therefore, a condensing map.
4) Step.4:N has a closed graph.

Let Y, = Y,,h, € N(y,) and h, — h,. We shall prove that h, € N(Y,).

0
h, € N(y,) means that there exists V, € Sk y, such that

h,(t,0) = y(0,w) +j[Vn (s,)+V,(s,0)-Y,(s,0)]ds,te J,w e Q.

nl
We must prove that there exists V, € S .y, such that

h, (t, ) = y(0, w) +j[v0(s,w) +Y,(s,@)-Y,(s,w)]ds,teJ,we
0
Consider the linear constinuous operator I': L'(J,R,Q) — C(J,R, Q) defined by
Tv)(t, o) = jv(s, w)ds.
We have 0

[ [hn ~y(0,0)~ [[7,(s.) - yr,(s,a))]ds}—[ho ~y(0,0) + [[F,(s.) - yo(s,w)ds) L.—0.
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nl
From Lemma 2.1, it follows that "o S ¢ is a closed graph operator.

Also from the definition of I" we have that
[hn (1,0)- ¥(0,0) [ 7, (5, ) - yo(s,co)]dsj er(Ses)
0
Since Y, — Y, it follows from Lemma 2.1 that
h, (t, @) = y(O,w)+j[VO(S,w)+Vo(s,a))— Yo(s,0)]ds,teJ, Q.
0

nl
For some V, €S .y,

Next we shall show that N has a fixed point, by proving that
5) Step5:Theset M :={veC(J,R,Q):Ave N(v) forsome w €2, A1 >1}

nl
is bounded. Let y € M then Ay € N(y) for some A >1. Thus there exists Ve S ¢y such that
t
y(t,®) =2y(0,0) + A" j [V(s, @)+ V(s,0) - y(s,0)ds, t € J.
0
Thus

|y(t, o) <] y(O,w)|+j|v(S,w)+7(S,w)— y(s,w)|ds, ,0eQ ,tel.

From the definition of 7 there exists @ € L'(J,R", Q") such that
| F(t, ¥(t,»), ) ||=sup{|v|:v e F(t,¥(t,®),w)}< F(t, ®) for each y € C(J,R, Q).

Y(t, @) [<max(a(0,®), B0, @)+ || &I, +T max(sup,_, | a(t, @) |,sup,., | B(t, @) )+ [| y(s,@) | ds.

Set
z, =max(a(0, ®), B(0,w))+|| # ||, +T max(sup,, |a(t, @) |,sup,, | Bt @)|).

Using the Gronwall’s Lemma [11], we get for each t € J RORS Q.
t
| Y(t )< 2, +2, [e*ds
0

<z,+7,(e" -1).
Thus
This shows that M is bounded.

Hence, Lemma 2.2 applies and N has a random fixed point which is a solution to problem (3.1)- (3.2).
6) Step 6: We shall show that the solution Y of (3.1)-(3.2) satisfies

at,w) <yt,o)<pt,o)foalteJ,0eQ
Let Y be a solution to (3.1) — (3.2). We prove that
at,w) <yt,w)foralte),weQ)
Suppose not. Then there exist t;,t, € J,t, <t, such that a(t;) = y(t,) and
a(t,w) > y(t,w)forall t e (t,t,).
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In view of the definition of 7 one has
y't,o)+yt,w) e F(t a(t,),0)+a(t,o)ae on (,t,).

Thus there exists V(t, @) € F (t, o (t, ®) , @) a.e. on J withv(t,®) >V, (t,®) a.e. on (t,,t,) such that
y't,w)+y(t, o) =v(t,w) +a(t,w)ae on (t,t,).

An integration on (t;,t), with t € (t;,t,) yields

y(t o) -yt w)= I[V(S, w)+(a-y)(s, w)lds

4

t
>jv(s,a))ds.
4
Since o is a lower solution to (1.1), then
t
a(t,w)-a(t, o)< fvl(s,w)ds te (t,t,), 0eQ.:
4

It follows from the facts Y(t,, ®),V(t, @) > v, (t,®) that
at,w) <yt,w)forall te(t,t,) oeQ.

Which is a contradiction, since Y (t, @) < e (t, @) for all t € (t,,t,).Consequently

at,w)<yt,w)forall e, teld.
Analogously, we can prove that
y(t, o)< p(t,w)foralloeQ, teJ.
This shows that the problem (3.1) — (3.2) has a random solution in the interval [et, 3].
Finally, we prove that every solution of (3.1) — (3.2) is also a solution to (1.1). We only need to show that
a(0,0) < y(0,0) - L(¥(0,), (T, w)) < B(0, »).
Notice first that we can prove that
a(T,0) <y(T,w) < B(T,w).
Suppose now that Y(0, ®) — L(Y(0, ®), (T), ®) < (0, w). Then y(0,w) = a(0,®) and
y(0,m) — L((0,w), (T, ®) < (0, w)).
Since L is nonincreasingin Y, we have
a(0,0) < a(0,0) - L(a(0,0),a(T,»)) <a(0,w) - L(a(0,0), (T, 0)) <a(0,0)

Which is a contradiction.
Analogously we can prove that

y(0,0) - L(z(0,0),7(T,w)) < B(0, w).
Then Y isa solution to (1.1).

IV. CONCLUSION
The fixed point theorems are useful for proving the existence theorems as well as for characterizing the solutions of different types
of functional random differential equations on bounded or unbounded intervals of real line. The choice of the fixed point theorems
depends upon the situations and the circumstances of the nonlinearities involved the problems. The selection of the fixed point
theorems yields very powerful existence results as well as different characterizations of the nonlinear function differential equations.
In this article, considered the nonlinear boundary value problem of first order random differential inclusions and prove the
existence results through classical fixed point theorem.
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