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Abstract: Load balancing techniques play significant role in cloud computing environment because it directly af-fects the 
performance of cloud data centers. An efficient load balancing technique not only provides high availability of resources to 
cloud users, but also enhances the performance of cloud data centers. Load balancing techniques are a typical NP-hard 
problem. Currently, many researchers have solved load bal-ancing problem by considering well-known metaheuristic 
techniques. However, these techniques suffer from one of these issues: premature convergence, poor convergence speed, 
initially selected random so-lutions and stuck in local optima. To handle the issues associated with existing metaheuristic 
techniques, in this paper, a mutation based particle swarm optimization based load balancing technique is proposed. The 
proposed technique has an ability to overcome several issues associated with existing techniques such as premature 
convergence, poor convergence speed, initially selected random solutions and stuck in local optima issues. Also, multi-
objective fitness function is designed as a minimization problem. Multi-objective fitness function considers energy 
consumption, makespan and load imbalance rate parameters. The proposed technique outperforms existing load balancing 
techniques in terms of makespan, speedup, communication overheads, efficiency, utilization, mean gain time, load 
imbalance rate and energy consumption. 
Index terms: Load balancing, Particle swarm optimization, Cloud computing, Energy efficiency. 
 

I. INTRODUCTION 
Cloud computing is growing phase having a world view of substantial scale distributed computing in internet era [1]. It is a 
combination of grid and ’X’ as a resources in wireless environment. Here, ’X’ may be infrastructure, platform, software, data, 
hardware etc. [2]. The primary objective of scheduling is the assignment of jobs to available set of servers so that execution 
time can be minimized. Another feature of scheduling is decision-making process and is mostly used in service and 
manufacturing organizations. Scheduling takes place by taking help of load balancing algorithms [3]. Job is a term related with 
scheduling used at application level and is a script or program to execute a specific set of jobs. Load balancing algorithm is a 
technique to which jobs are optimistically assigned to data center resources. There is no completely perfect scheduling 
mechanism available due to different scheduling objectives. Scheduling algorithms can be executed or implemented under 
suitable conditions according to assigned applications by a good scheduler. Scheduling algorithm is a mechanism that solves a 
problem in seconds, minutes or even hours. Time used for execution of particular algorithm measures the efficiency of that 
algorithm and so time complexity can be measured from the efficiency. Time complexity plays a significant role in time 
execution of an algorithm. There are some time complexity algorithms used for job execution. The problem is feasible, 
traceable, fast and efficient in case of a program which is related to polynomial time algorithm. Using computational 
complexity, hypothesis number of problems can be solved as complexity class based on some resources [4]. 
Cloud data centers are often provisioned to handle peak loads, that can result in low resource utilization and wastage of energy. 
Resource utilization directly relates to energy consumption, so it should be optimized in order to save energy [5]. Cloud 
computing potentiality for convincing energy savings has so far been aimed at hardware features. Contrarily, software systems 
can also be improved at development time by postulating the energy characteristics [5]. 
In cloud computing, load balancing techniques are required for assigning the workload between cloud data centers to prevent a 
state of some nodes being over laden while others being lightly laden or even idle. The workloads should be mapped to various 
resources under the constraint of energy optimization [6]. With efficient load balancing, resource utilization can be enhanced 
which can further reduce energy consumption thereby reducing carbon emissions and cooling requirements of cloud data 
centers [6]. Every operational physical node in a cloud data center, produces heat. When a specific node is unreasonably used, 
hotspots can appear in a given data center. Therefore, not only the aspect of efficient job allocation to cloud data centers has to 
be considered, but also the heat generated by  servers have to be measured and accounted for to avoid these hotspots [7]. 
As a result, there is a requirement for the development of an efficient load balancing technique that is capable of improving the 
performance of cloud data centers. The load balancing technique should be able to assign the workload to cloud data centers in 
such a way that makespan should be minimum. It should lead to the reduction in the energy consumption, thereby dropping the 
carbon emissions and cooling requirements of the cloud data centers, to an extent which can help to achieve green computing 
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[7]. Due to the factors outlined above, the energy-aware load balancing technique for cloud computing environment has been 
the motivation behind this work. Recently, several researchers have solved load balancing issue by considering well-known 
metaheuris-tic techniques. These techniques are Genetic algorithm (GA), Particle swarm optimization (PSO), Ant colony 
optimization (ACO), BAT algorithm, Artificial bee colony etc. However, these metaheuristic tech-niques suffer from one of 
these issues: premature convergence, poor convergence speed, initially selected random particles and stuck in local optima 
issues. Additionally, majority of existing researchers have con-sidered scheduling of independent jobs only. Also, the 
researchers who have focused on the dependent jobs have neglected the effect of communication overheads. Therefore, for 
dependent jobs it becomes more significant to minimize communication overheads. To handle these issues mutation based 
particle swarm optimization load balancing technique is proposed in this paper. 
 

II. RELATED WORK 
Javanmardi et al. (2014) utilized genetic based fuzzy logic to balance the jobs between available high-end servers [8]. Agarwal 
and Jain (2014) presented a generalized priority technique to minimize the makespan in more efficient way [9]. Patel and Bhoi 
(2014) enhanced priority based scheduling technique using multiple measures and attributed it to decision making model [10]. 
Hassan et al. (2015) utilized genetic algorithm based scheduling technique to minimize the makespan [11]. However, it suffered 
from poor convergence speed and is stuck in local optima issues. Kalra and Singh (2015) studied various load balancing 
techniques for cloud data centers using some well-known metaheuristic techniques [12]. Cho et al. (2015) proposed an 
integrated Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) based scheduling technique. It has ability 
to overcome the problem of poor convergence speed with ACO and premature convergence issue with PSO [13]. 
Milani and Navimipour (2016) studied various benefits and limitations of existing load balancing techniques [14]. Mittal and 
Katal (2016) designed optimized load balancing technique to minimize the load imbalancing between available cloud data 
centers [15]. Singh and Chana (2016) proved that the efficient selection of metaheuristic techniques have the ability to 
overcome the premature and stuck in local optima issue [16]. Masdari et al. (2017) proved that PSO based load balancing 
technique has good convergence speed [17]. However, it suffers from the problem of initial number of particle issue. Duan et al. 
(2017) proposed a machine learning technique based scheduling technique [18]. However, it was effective for those whose prior 
burst time is known. 
Lalwani et al. (2013) designed multi-objective PSO to optimistically schedule the jobs between cloud data centers [19]. A 
hybrid PSO scheduling technique has been designed by considering neighborhood search strategies to achieve a trade-off 
among exploration and exploitation characteristics [20, 21]. Wu et al. (2014) also elaborated PSO very well. A guided PSO has 
been designed using mutation operator and different local search approaches to schedule the jobs between cloud data centers 
[22]. Behnamian (2014) designed a discrete PSO which comprises two components: a PSO and GA. The fuzzification was used 
to rank the jobs [23]. Zuo et al. (2014) proposed four updating techniques to dynamically update the velocity of each particle to 
ensure its diversity and robustness [24]. 
Liang et al. (2015) designed adaptive PSO based clustering to balance local and global search in an optimization process. 
Initially, K-means clustering divided the swarm dynamically in the whole process to construct variable subpopulation clusters 
and after that adopted a ring neighborhood topology for data sharing between these clusters. Then, a novel adaption technique 
was adopted to adjust the inertia weight of all individuals based on the states of clusters and swarms [25, 26]. Marini and 
Walczak (2015) 
2 studied the potentials of PSO especially for scheduling the jobs between cloud data centers. It has been observed that the PSO 
variants can efficiently solve the load balancing problem and take lesser time to converge the final solution [27]. Lynn and 
Suganthan (2015) presented a learning based PSO technique with enhanced exploration and exploitation [28]. Two multi-agent 
based PSO techniques were designed and compared using different benchmark parallel problems [29, 30]. A multi-objective 
PSO technique using multiple search strategies were used where decomposition approach was exploited for transforming multi-
objective particles into a set of aggregation problems. Then, each particle was assigned accordingly to optimize each 
aggregation problem [31, 32, 33]. 
A hybrid PSO and VNS was designed to overcome the initial number of particles issues with standard PSO technique [34, 35, 
36]. Mostly, PSO was used to develop initial solutions near to optimal schedules. Based upon the gbest values, various solutions 
are selected for further proceedings. Then, VNS come in action to improve the results of PSO technique further [37, 38, 39]. A 
multi-objective fitness function was designed to reduce the energy consumption rate, makespan and load imbalance rate at a 
same time [40, 41, 42]. 
A double global optimum technique was proposed with the help of GA and PSO approaches to remove the premature 
convergence and convergence speed issue [43]. This technique can efficiently schedule  the jobs between cloud data centers in 
an efficient manner [44]. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

Volume 7 Issue II, Feb 2019- Available at www.ijraset.com 
    

 1062 ©IJRASET: All Rights are Reserved 

To overcome the problems associated with existing scheduling techniques many researchers have proposed hybrid scheduling 
techniques to enhance the scheduling outcomes further [45, 46]. Arora and Singh (2013) integrated firefly, BAT and cuckoo 
search to find optimal solutions. Experiments showed significant results compared to standard Firefly, BAT and cuckoo search 
based scheduling techniques [47]. Raju et al. (2013) designed a hybrid ACO and cuckoo search based scheduling technique. 
Hybrid technique has reduced the makespan and energy consumption efficiently [48]. 
Rahmani et al. (2013) designed a hybrid ACO and PSO based metaheuristic technique to improve the convergence speed of 
ACO and number of particle issues [49]. Ghanbari et al. (2013) discussed a hybrid ACO-GA to reduce premature convergence 
issue with GA [50]. Huang et al. (2013) designed ACO and PSO based hybrid technique to minimize the load imbalancing rate 
of load balancing techniques [51]. Hybridization of metaheuristic techniques have improved the convergence speed [52, 53], 
remove the problem of premature convergence [54, 55], stuck in local optima issue [56, 57]. 
Most of the scheduling techniques are based on single objective issue. The multi-objecitve optimization [58, 59, 60, 61] sets 
more than one performance metrics as fitness function. Kachitvichyanukul et al. (2011) introduced a multi-objective two-stage 
job shop scheduling using genetic algorithm to solve three criteria like minimization of total weighted earliness, minimization 
makespan and total weighted earliness and at end also minimized total weighted tardiness for best optimization [62]. Li et al. 
(2012) introduced a hybrid multi objective game theory algorithm for solving the scheduling problems [63]. Shahsavari et al. 
(2013) introduced a novel hybrid approach to combine simulated annealing with genetic algorithm having multi objective 
function in load balancing problems which increase the quality of solution and reduce the computation time [64]. Wang et al. 
(2014) implemented a load balancing mechanism based on multi-objective GA for minimizing energy consumption and makes 
more profits to service providers by providing a dynamic selection mechanism [65]. 
Ramezani et al. (2015) considered job execution cost, job queue length, power consumption and job transfer time conflicting 
objectives to develop a multi-objective approach for load balancing to optimize it. Also reduced costs from both perspectives 
i.e. customer and provider in cloud environment using PSO and GA multi-objective features. CloudSim toolkit is also used for 
finding the optimal job arrangement among virtual machines [66]. Kumar et al. (2016) optimized the processing time and 
energy with multi-objective nested PSO in load balancing using a simulated open source cloudSim cloud computing platform 
[67]. Many load balancing algorithms with modified Min-Min load balancing technique in the grid system is used to enhance 
the Load balancing, minimizing makespan and rescheduling of jobs for efficient utilization of resources [68, 69, 12]. Joshi et al. 
(2016) handled multi-objective optimization with the evolutionary technique by proficient PSO to minimize computation time 
and fast convergence comparative to other procedures [70]. Yao et al. (2017) studied a multi-objective multi-swarm optimized 
algorithm to solve conflicting objectives like energy consumption, cost and makespan (total execution time) and satisfy the 
multiple scheduling [71]. 

III. MATHEMATICAL FORMULATION 
Metaheuristic based load balancing techniques do not guarantee to provide optimal schedules for cloud computing environment 
due to their random nature. However, the results provided by metaheuristic techniques are good as compared to heuristic 
techniques. These techniques assign user jobs on available cloud servers in such a way that overall execution time of given set 
of jobs gets minimized. 
PSO and GA were considered as efficient load balancing techniques for generating satisfactory results. Assuming investigation 
ability of GA and good convergence speed of PSO, an efficient scheduling technique has been proposed in this research work. 
The proposed scheduling technique utilize mutation operator of GA and implemented it in PSO to minimize the makespan, load 
imbalance rate and energy consumption of cloud servers. 
Multi-objective fitness function is used as a minimization objective function for all designed scheduling techniques. Energy 
consumption, load imbalance rate and makespan parameters are used so as to design multi-objective fitness function. Job 
duplication is also considered to reduce the inter-communication overhead time of servers especially in case of dependent jobs. 
A Directed acyclic graph (DAG) G = (V ,E) compose V vertices and e edges. A V shows a decayed job, that is processed in 
order not considering the preemption. The execution time of job ja 2 v on cloud (Cl) is referred as !ab. Each eab 2 E shows 
precedence constraints among ja and jl, that signify consequence of ja needs to be transmitted to jl, before it initiates its 
execution. Each eab 2 E is of a non-negative weight (nwab) showing the inter-communication cost consisting interdependent ja 
and jl. The actual communication weight corresponds to 0 once the co-dependent set of jobs are assigned to the identical 
servers. Suppose that, a job grid with M jobs is to be assigned to a cloud model with nop servers. Given an incomplete 
optimistic job allocation matrix, taking into account the optimistic job allocation, the highest-priority prepared job ja on the 
cloud Cl, its initial start time St(ja; Cl) may be defined as follows: 

  
St(ja; Cl) = max  Sae(Cl); Sr(ja; Cl) (1)

Here, Sae(Cl) represents the time when cloud (Cl) is available to process the job (ja). It is computed as follow: 
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Sae(Cl) = max  ex(Cl); Sft(jf ) (2)
Here, ex(Cl) shows set composing jobs which have been recently assigned on Cl while Sft(jf ) shows actual execution time when 
jf ends up its execution. Sr(ja; Cl) shows the time when all information required for the execution of ja is communicated to Cl and 
can be computed as follows: 

Sr(ja; Cl) = max  ex(ja); Sft(jf ) + nwf;i (3)
Here, ex(ja) shows a set compose of job (jf ). The nwf;i is assigned to be 0, if jf has been assigned to Cl. Assuming that ja is 
scheduled on Cl with non-preemption technique; its actual finish time ((Sef (ja; Cl))) is computed as follows: 

Sef (ja; Cl) = St(ja; Cl) + !ab (4)
Here, !ab shows the execution time of ja on Cl. St(ja; Cl) and Sef (ja; Cl) are allocated to Sr(ja) and Sft(ja), respectively. Also, 
termination vertice (jEXIT ) represents the ms. 

ms = Sft(jEXIT ) (5)
 

IV. PROPOSED TECHNIQUE 
To handle the issue of load balancing in cloud computing environment, a typical cloud model is designed. Cloud model contains 
several geologically distributed high end servers associated using internet. Prin-cipally high-end servers contain of numerous 
computing and storing resources. These high-end servers communicated with each other using a high bandwidth 
intercommunication network. Thus, in the de-signed cloud model, transmission delay does not play a significant role. In 
designed cloud environment, each user can utilize cloud resources with the help of internet. Cloud service provider is 
responsible for allocation or deallocating the resources to users. The user jobs are disseminated between several cloud data 
centers . Each decompose user job into sub-jobs so called jobs and allocate it between (DCs) DCs available processing 
elements in the respective. The designed load balancing technique (CroES) (DCs) is responsible for efficiently assigning of user 
jobs into available with an objective to reduce the (DCs) makespan time and average waiting time. 
Assume that Job = (JS1; JS2; JS3:::JSM ) is a group of applications received in a specific period of time from M users. Every job 
(JSj) is considered by a duplet < A0

i; Di >. In which A0
i defines arrival time of job (JSj) and Dj represents deadline of job (Dj) If a 

job could not finish within deadline time, then it is referred as a failed job and queued again for further processing. Throughout 
the scheduling procedure, 

                 
jobs are allocated to data centers (DCs)(D1 ; D2 ; D3::::DN ). Here, N   M. Each Dj is associated with a 
duplet < cj; nj > :cj; cost per unit time charged by DC s

0 to implement jobs, nj is the number of available 
processing elements (PE ) to implement jobs. Each DC0 have set of PE 

f 
C r

o 
E ; C r

o 
E 2::

:
C  E 

ng 
to 

s    s  1  ro   
Evaluate assigned job. Each PE is associated with a duplet < s; p >. Where, s and p represent the burst time and energy 
consumption of each to evaluate assigned job. Every Job is demonstrated as a Directed acyclic graph (DAG), represented as 
g(v; E). The set of nodes= fj1::; jm g shows jobs and the set of arcs represents the data dependencies among jobs. An arc is in the 
form of <fji::; jjg >2 E , where jj represent parent job and jj is a leaf job. jj cannot be implemented until all of its root jobs have 
been 
implemented. Assume that user job   is allocated to data center   .   define set of jobs   allocated to 
Jj DJ  jA Jj 
a PE(Cj). If the time demands executing jA using Ci is represented by j. The deadline time of j i can be evaluated as follows: 

finish( j) = start(jA) +  j (6)
  
Therefore, burst time required to finish the job by Di is rerpresented by Makespan MSi and calculated 
as follows:  

MSi = maxffinish(jA)g (7)
  
Here, j(A=1:::n) is the jobs that are assign to Di. The Energy consumption (Ej) to evaluate a job (Jj) 
is evaluated as follows:  

Ej = SA
m

=1( A   CA) (8)
Here, CA represent power consumed per unit time by PE (Ci) to execute given job (jA). The cost to 
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execute the job by   is evaluated as follows: 

Di 

 cj = Cj   MSj (9) 
    
Here, cj is the price per unit time charged by Di to implement job. The utilization Uj of Di is evaluated  
as follows:   
 MS 

(10)
 

 maxfMSkg   
The fitness functions of this proposed model can be represented as follows:   

MinimizeMSjj = 1::N (11) 
MinimizeEii = 1::N (12) 
MinimizeC = St

n
=1cj (13) 

MinimizeJii = 1::N (14) 
Subject to: 1. The job must finish before deadline (Di) 
2. Every job can be assigned to only one   . 

Di 
3. Number of jobs must be less than the number of available Data. 

In this experiment, a mutation based PSO has been designed. A step by step methodology is used. Initially, the cloud based 
model is designed. The DAG is designed for the FFT problem. Then proposed technique will be formulated. In proposed 
technique, first of all, random initialization of given set of solutions will be done. Then, PSO comes in action to evaluate the 
optimal load balanced schedule. It can evaluate the global optimal solution. However, PSO is limited to the initial set of 
particles, which means wrongly selected particles may lead to poor results. To overcome this issue, the proposed technique will 
end up by optimizing the solution with the mutation operator technology. Thus, proposed technique will have an ability to find 
the optimal solution in more optimistic manner. The subsequent section contains the detail of each technique with suitable 
procedures and required formulas. Initially, a set of random particles are developed. Set of group particles were developed with 
the help of encoding technique and a solution was obtained from the every particle in population set. Particles list constructed 
with the help of integer numbers randomly. The random integer numbers are created by permutation technique. The encoding 
procedure of particles having high priority job list to low priority job list. Here, n genes or jobs or sub-jobs (can be taken as sub-
jobs also) executed or scheduled in a priority list (high order priority to low order priority) or in a sequence. Topological order 
is the best for arrangement of subjobs or jobs. Therefore, job or subjobs are evaluated as these occur having DAG with initial 
population size Csize = 4. Further, top level rank (Tr), bottom level rank (Br) and top-bottom level rank (T-Br) are the three 
major heuristic rank techniques used in this design. To show a better priority queue list (PQL) a better seeding procedure must 
be adopted for initial population and to obtain this a three level ranking was illustrated well in Eqs. (4.28), (4.29) and (4.30) 
respectively [72]. This is the HEFT based PQL. A PQL values were shown in Table 1. Here, CP taken as the position of 
particles. 

 

js2succ(ja) 

Here, the ACC(ja) is the average computational cost of subjob wa, QC(ja; js) is quantity of commu-nication between the subjobs 
ja and js and ranktop(js) is the upward rank of subjob ja’s successor.  

rankbottom(ja) =   max ranktop(js) + ACC(js) + QC(ja; js) (16) 
js2pred(ja) 

Here, rankbottom(ja) is the downward rank of the subjob ja’s precedence. 

ranktop  bottom(js) = ranktop(ja) + rankbottom(ja) (17)

Table 1: Priority queue list showing the job priority queue   
 CP 1 2 3 4 5 6 7 8 9    
              
 Br PQ j3 j4 j7 j1 j6 j2 j9 j5 j8    
 Tr PQ j3 j2 j1 j8 j4 j6 j5 j7 j9    
 TBr PQ j9 j8 j7 j6 j5 j2 j1 j3 j4    
      

(15) 
 

ranktop(ja) = ACC(ja) + max  (QC(ja; js) + ranktop(js))  
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The processing of initial population is described as follows: 
Algorithm 1 : Initialization or initial population creation 
1) Take population size Csize and particle size Csize as input values  
2) Set i = 3  
3) Initializing i particles set using three heuristic rank techniques  
4) Generate population randomly after initialization of particle set  
5) For j = 1 to (j   Csize   1)  
6) For k = 0 to (k   Csize   1)  
7) Create a new particles k values randomly  
8) Now particle i position changed from left to right in a queue  
9) Endfor  
10) Endfor  
11) Stop the processing of creation of genes  

A. Assignment Of Sub-Jobs To High-End Machines  
In the case of originated population, every individual should have a major priority mechanism having permutation process. 
Therefore, subjobs should follow precedence conditions for this process. A subjob will be allocated to the server with maximum 
speed, if and only if it is not already scheduled. In the case of proposed approach, HEFT technique is utilized to define the 
subjobs with maximum priority in the individuals. Further, it allocates given subjobs to the server(s) in such a way that it 
minimize the overall ms. 
The initial start time (IST ) of the subjob ja on processor Ci is symbolized as IST (ja; pi) which is obtained as follows: 

IST (je; Ci) = 0 (18) 
IST (ja; Ci) = maxjs pred(js) + AST (js) + (C(ja; js)) (19) 

Here, je is job entry. The actual start of sub job ja on processor Ci is symbolized as AST (Actual start time) (ja; Ci). This is 
computed as follows: 

AST (ja; Ci) = max(IST ((ja; Ci); avail(Ci)) (20)
Here, avail(Ci) is time that the processor Ci has idle and ready for the job execution. The earliest finish time of subjob ja on 
processor Ci is symbolized as IFT (ja; Ci) which is obtained as follows. 

IFT (ja; Ci) = CC(ja; Ci) + AST (ja; Ci) (21)
Here, CC(ja; Ci) is the computational cost of the subjob ja on processor Ci . The actual finish time 
AFT is computed as follows.  

AFT (ja; Ci) = min EFT (ja; Ci) (22)
1  l  P  

Allocation of jobs or subjobs to n servers or using the load balancing criteria is a significant achieve-ment in proposed technique 
and procedure is described as follows. 
Algorithm 2 : Job allocation 
1) Initialize current population values  
2) Input the particle size value as Csize  
3) Evaluate schedule length or makespan ms from a priority queue list of jobs or subjobs allocated PQL  
4) While (PQL 6= Null) do  
5) First job or subjob from PQL is selected  
6) For processors pi = 1 to n  
7) Evaluate Ft or (ms) as fitness function using HEFT scheduling process  
8) If rand JDR, then assign ith subjob to all virtual machines and evaluate maximum schedule length or makespan (ms), Else, 

Allocate ith subjob to jth servers and evaluate maximum schedule length or makespan (ms)  
9) Assign jobs or subjobs to virtual machines  
10) Evaluate ms = max(schedule length)  
11) Endfor  
12) Remove ith subjob or job from PQL  
13) End while loop  
14) Return the final value of makespan ms  

 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 

Volume 7 Issue II, Feb 2019- Available at www.ijraset.com 
    

 1066 ©IJRASET: All Rights are Reserved 

B. Mutation Operator  
There are two types of mutation in GA, naming immigration and allele type. In this algorithm immigration mutation is used. For 
mutation process, a mutation operator is used to process a diversity in particle population with a defined mutation probability 
rate. Here, a particular particle is replaced randomly with another particle and evaluate the fitness function makespan ms till a 
better optimize result arrived. This process is shown in Figure 1. An iterative process of mutation will occur until a better 
optimal solution will be obtained. This process is illustrated in Algorithm 13. 

   
First Pred 
w3 

First Succ 
w9     

             
1 5 6 2 9  3 4  7 2 8 10 

             

             
1 5 6 2 3  9 4  7 2 8 10 

             
Figure 1: Mutation operator 

Algorithm 3: Mutation operation process 
1) Inputting the particle list of current population  
2) A new population generated by applying mutation operator  
3) Select the particle list randomly and Let G = rand(gene)  
4) Select the first successor and Let S = rand(gene) from particle list except G  
5) Offspring= interchanging G with S  
6) Evaluate the makespan ms  
7) If ms=minimum then terminate else go to the first step again (i.e. step 1).  
8) Print optimal result having makespan ms  

C.   Termination Condition 
Since, it is not possible to achieve ms as 0, therefore, 100 function evaluations used to stop each section of the algorithm. The 
function evaluations mean total number of time tried to calculate the ms, so called fitness function or objective function. 

D.   Particle Swarm Optimization 
The optimistic schedule generated by the GA, will act as initial number of particles for the PSO. This technique can be called as 
guided GA based PSO.  
Thus, it can overcome the issue of “poorly selected particles tends to poor results” with the standard PSO. Let us take Ci which 
represent ith particle at a particular iteration. It has n number of dimensions and be represented as: Ci= [Ci1, Ci2, Ci3... Cin], where 
Cij denotes position value of ith particle w.r.t. jth dimension. PoCi in the swarm optimization have r set of particles operated at ith 
iteration and is represented as: PoCi= [C1; C2; C3; C4; :::Cr]. PVk represents the velocity of kth particle moving in a particular 
iteration. Eq. (4.24) is represented as: PVk= [pvk1; pvk2; pvk3:::pvkm], Here, pvij denotes the velocity of kth particle w.r.t. dth 
dimension. 
In load balancing, permutation (Permu) helps in generating and searching the particles path. It is represented by PermJi. It is 
applied on particles as Ci:PermJi= [permJi1; permJi2, permJi3, ... 
permJin]. Here, permJij represents assignment of job j of the particle i using the permutation PermJi in particular iteration w.r.t. 
jth dimension. Computed weight or inertia weight or inertia (IW ) is a powerful attribute and is used to control the impact of 
previous velocity on the current velocity.  
Personal best (pbest or PB) shows best position of ith particle having best fitness till jth iteration. PB for every particle can be 
computed in each iteration. Further it can be updated after every iteration. 
Global best position (gbest or GB) from all the sets of local particles. It is the best from whole swarm and gives the better 
optimization solution. Machine Sequence (mseqi) represents machine se-quence of kth particle. It occurs at particular sequence 
and iteration and is: mseqk=[mseqk1, mseqk2, mseqk3,...mseqkm], Here, machine sequence is mseqk1. It works for kth particle w. r. 
t. ith dimension. 
PSO for evaluating the load balancing to get the optimized solution is well elaborated in Algorithm 
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E. Applying Mutation For Optimized Result 
To generate heuristic based local search, select the suitable neighborhoods. The efficiency of mutation operator increases the 
correct choice of neighborhoods. Mostly three neighborhoods used in getting the better efficiency. One is having exponential 
size and other two have polynomial size. In load balanc-ing, the assignment is the biggest problem and optimal solutions can be 
obtained with the use of large neighborhood elements. Efficiency can be increased by doing so. 
Let us take x = FS as a feasible solution. Taking Move(x) operation that represents feasible solutions set, can be attained from x 
by selecting one job at a time, removing the job from the server. Further, assign the removed job into another server. It will 
create a relationship of the server with the jobs and such neighborhood has most jDj jSj solutions. All the feasible solutions can 
be obtained from second neighborhood denoted as Swap(x). It can be done from x by exchanging two jobs between different 
servers. It consists of at most D2 solutions. Randomized versions of neighborhoods can be used due to polynomial nature of 
neighborhoods. So, efficiency in local search can be increased that it will also minimize the computational cost per iteration. 
Let q is the parameter used in randomized neighborhood having operation Moveq(x). Here, q range is from 0 < q < 1. Moveq(x) 
is a element of neighborhood Move(x). Every part of Move(x) is inclusiv 
Algorithm 4: To get the optimized solution using particle swarm optimization 
1) Intialization: Initialize the population sets of swarm and set i = 0 and j= best solution by particles. Each particle’s position 

and its velocity are taken for evaluating the best schedule.  
2) Apply smallest position value rule (SPV) and its operation: There is a SPV applied on the set of jobs to get the permutations 

of jobs for every particle to get the better solution as compared to previous procedures.  
3) Evaluation of ms: The evaluation of ms for every permutation depends upon the representation of jobs. Note that personal 

best (pbest) can be computed from the ms evaluation. So, in every iteration, the minimum ms of a particle is the best 
position of that particle.  

4) Let i = i + 1 counter work for new iteration and upgrade the iw as follows:  

= iwi  1:x ; (Here,  is the decrement factor) (23)
5) Upgrade the velocity as follows: 

PVkj
i =iwi + PVkj

i 1 + c1:j1(Ckj
i 1    PBkj

i 1) 
(24) 

+ c2:j2(Ckj
i 1    GBkj

i 1) 
Here, c1 is social parameter and c2 is cognitive parameter. between (0; 1). 
6) Upgrade the position as: 

Ckj
i = Ckj

i 1 + PVkj
i 

j1 and j2 are random numbers 
(25) 

7) Changing sequence of jobs: With the help of the SPV rule, the particle’s position can be updated by applying permutation 
operation on jobs. It will change the sequence of jobs.  

8) Update of pBest: By comparing the old one pBest with new one personal, the pBest can be upgraded. If the new one has the 
lower value as compared to old one, then the new one is best and so updated with old one.  

9) Evaluate gBest: gBest can be evaluated from the set of computed pBest. The pBest having minimum value from all the 
pBest is the gBest.  

10) Termination criteria: Procedure can be stopped if the counter of iteration exceeds the maximum value of iteration (It is also 
a comparison of maximum utilization of CPU time). into Moveq(x) having probability q. Similarly, neighborhood 
Swapq(x)is defined. 

Also, x represents neighborhood function and is used for the construction of elements by using server and jobs. For every 
server, a set of jobs Ds is defined. Here, s 2 S be removed from server S. Further, remove one job from every set Ds. D is 
denoted as the subset of removed jobs. In the case of Ds = 1 occurs for the server s, then remove a dummy job. 
The primary purpose of this operation is to enhance the performance of all servers in a particular time interval. The given 
condition ensures the job movement i.e. every job has movement only to one server and so every server has exactly one job at a 
time. 
General algorithm for mutation operator is described as follows: 
Algorithm 5: To get the better-optimized results using mutation operator 
1) Assign SOL = FS  
2) Following steps be repeated till stopping criteria met.  
3) Set i := 1;  
4) Do while i = imax:  
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5) Select i jobs from optimistic solution developed by PSO procedure  
6) Move these jobs to other servers  
7) By applying local enhancement procedure on neighborhood Moveq, Swapq.  
8) By applying the assignment operation to improve the current solution lmax times.  
9) If improved solution x1 is better than x, then x := x1 and i := 1, else, i := i + 1.  
10) End of while loop.  
11) Return x.  
In this algorithm, execution time can be computed as soon as stopping criteria met. Select the ele-ments from sets Ds randomly 
having the uniform distribution. 
The proposed technique utilizes four updating velocity mechanisms to efficiently get away from non-global optima and develop 
a result quality [24]. Cloud computing environment has a high-end area of cloud, all of that includes a confined memory to 
ensure that inter-cloud interactions depend exclusively on frames exchangement. The processing weight of a precise job ja " v 
on cloud (Cl) is referred as !ab. Each edge eab " E represents precedence constraints between jobs ja and jl, which signify 
consequence of job ja needs be passed on to job jl prior to job jl initiate execution [9]. Every edge eab " E is of a non-negative 
weight nwab showing communication cost involving interdependent jobs ja and jl. The actual message passing weight is 
corresponding to zero once the co-dependent set of jobs is allocated to the identical cloud. The originated vertice of a 
connection is known as the ancestor and the terminated vertice is known as the descendant. The job having no parent is reffered 
as the relay job where as job without any leaf child is called the terimination job [9]. Suppose that, a job grid with M jobs are to 
be assigned to clouds. Given an incomplete optimistic job allocation matrix, taking into account the optimistic job allocation the 
highest-priority prepared job ja on the cloud Cl, its initial start time St (ja,Cl) may be defined as: 

St(ja; Cl) = maximum fSae(Cl); Sr(ja; Cl)g (26)
Here, Sae(Cl) referred as the moment at what time cloud Cl is existing to the processing of the job ja. It is referred as: 

Sae(Cl) = maxtf"ex(Cl) fSFT (jf )g (27)
Here, ex(Cl) represents the group containing all jobs which have recently been optimistic job allocation on the cloud Cl while 
SFT (jf ) symbolizes the real completion moment when the job jf in reality termination of its processing. Furthermore, St (ja, Cl) 
in Eq. (4.39) indicate the moment when entire information required for the processing of job ja that is broadcasted to the cloud 
Cl, that can be referred as follows: 

SR(ja; Cl) = maxtf"pr(ja) fSFT (jf ) + nwf;ig (28)
Here, pr(ja) represents the group containing all instantaneous forerunner of the job (jf ), the nwf;i set to be 0 if the job (jf ) has 
been allocated to the similar cloud (Cl). Assume that job (ja) is scheduled on the cloud (Cl) with non-preemption execution 
technique; its original termination time. SEF (ja,Cl) can be defined as follows: 

SEF (ja; Cl) = St(ja; Cl) + !a;b (29)
Here, !a;b symbolize the processing time of the job ja on the cloud Cl. Following the job ja is unequiv-ocally allocated on the 
cloud Cl, the St (ja,Cl) and SEF (ja,Cl) are assigned to St (ja) and SFT (ja) correspondingly. In general ms of the complete 
concurrent process, namely turnaround time, is the max-imum time from given set of jobs that is equal to the real turnaround 
time of the termination vertice 
(jEXIT ). 

ms = maxta"v fSFT (ja)g = SFT (jexit) (30)
Here, ms represents makespan. Assume that V Mi ( 1; 2; ; n) is a set of devices of CCE. Let 1 is the local distributed server and 2; 
; n are external clouds (ECs). = 1, 2; ; I is a set of Processing element (PE) and = 1, 2; ; w is a set of jobs. Every job ( j) (j f1; 2; ; 
wg has a predefine finishing time %j and computation time rj and also compose of a job set Jj= fJj1; Jj2; ; Jj3g. Let TS 
be the given number of time intervals and also TS = maxj f1;2; ;wg (%j). Major goal by assigning w jobs to k k (1; 2; ; n) to 
capitalize on gain of 1. Every job would be assigned to one k k (1; 2; ; n). 
 
One time job is initiated for computing, it cannot be preempted, therefore computation intervals are consecutive. At any interval 
TS (TS (1; 2; ; S)), equipments utilized by all jobs computed in 1 can never acquire the maximum number of equipments of 1. 
The gain assumption is as: 
Maximize 

Gain = Sj
a
=1Sv

I
=1JjbjvCv   Sj

a
=1SI

J
=1

jSv
1

=1Sk
n

=1yjIK bjvckvrj (31) 
Subject to: Sk

n
=1yjIk = 1; 8j" (1; 2:::Jj)   
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STS
%j 

(32) 

=1ZjIS = yjI1rj; ; 8j"(1; 2; ::::w); I (1; 2; :::Jj) (33) 

 TSJj1    1; 8j"(1; 2; ::w); 1"(1; 2; ::::Jj) (34) 

TSJj1    %j   rj + 1; 8j"(1; 2; ::::w); 1"(1; 2; ::::Jj) (35) 

(TS   TSJjI ) _ (TS   %j   rj) _ ((TS   TSJjI ) ^ (TS   TSJjI + rj)) (36) 

Sj
a
=1SI

J
=1

jSv
I
=1ZjIsbjvCPJv   JCPU ; 8TS"(1; 2:::TS) (37) 

Sj
a
=1SI

J
=1

jSv
I
=1ZjIsbjvMESv   JMEM ; 8TS"(1; 2:::TS) (38) 

YjIk" range 0 to 1; 8j"(1; 2; :::a); "(1; 2; ::::Jj); k"(1; 2; ::::n) (39) 

ZjITS"(0:::::1); 8j"(1; 2; ::::a); I"(1; 2; ::::Jj); TS"(1; 2; :::::TS) (40) 

TSJj1"(1; 2; ::::TS); 8j"(1; 2; ::::a); I  2 to(1; 2; :::::Jj) (41) 
The objective function given in Eq. (4.44) has clearly shown that the earning of 1 and the follow-ing is its cost and condition Eq. 
(4.45) guarantees that each job is assigned to accurate cloud servers. Condition Eq. (4.46) defines that each job is accomplished 
before its maximum finishing execution time. Conditions Eqs. (4.46) to (4.48) guarantees that each job is non-preemptable. 
Conditions Eqs. (4.49) to Eq. (4.51) are assigned to 1 to define that it will not take CPUs and memory more than its predefined 
capacity, in each interval. At last Eqs. (4.52) to (4.54) give definitions of the various constraint variables and constants. 
The proposed technique initializes with random particles on the basis of a random variable theory. After following the job 
ranking, the particle is developed and prioritized with maximum turnaround time being the objective of every particle. Some of 
genetic characteristics consisting flipping mutation, crossover are then applied on developed particle. After that, the particle is 
classified to able to choose a sub-group containing of an individual for particles. The non-global exploration domain process of 
PSO is placed on every character in the chosen sub-group. 

F.  Stopping Method  
The proposed technique technique will return final results in two cases, either the defined number of iterations met or the fitness 
remain constant for more than ten iterations. 

V. COMPARATIVE ANALYSIS 
This section illustrates the experimental set-up and quantitative analysis of the proposed load balancing techniques. The 
proposed techniques have been tested on well-known Fast Fourier transform (FFT) benchmark parallel problem. Different sizes 
of jobs have been considered to evaluate the scalability effect of the proposed techniques. All load balancing was executed on 
Intel core i5 processor @ 2:56 GHz with 16 GB RAM. MATLAB 2013a software is used in combination with parallel 
processing toolbox. In this section, performance of proposed technique has been evaluated and compared with GA, ABC and 
PSO based load balancing techniques. Subsequent section compares the proposed technique with existing load balancing 
techniques based upon some well-known performance metrics. 
Table 2 and Figure 2 depicts the comparison between proposed technique, GA, ABC and PSO in terms of makespan (ms). It has 
been found that the proposed technique has lesser ms compared to existing techniques. 

Table 2: Makespan analysis of proposed technique 
V Mi FFT GA ABC PSO Proposed 

      
2 4 11212  127 11015  106 10257  79 10045  61 

 8 16799  194 16081  181 15924  147 15398  124 
 16 24132  287 23571  193 22022  193 21419  169 

4 4 9255  234 9144  235 8285  198 4693  173 
 8 12000  291 11103  287 9686  249 9353  204 
 16 14200  287 13756  312 11385  276 10858  219 

8 4 9287  274 9188  194 7848  174 7427  136 
 8 10200  319 9983  177 7942  194 7556  163 
 16 8799  227 8544  203 7352  186 7139  159 
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Figure 2: Makespan analysis of proposed technique 

The comparison between proposed technique, GA, ABC and PSO based load balancing techniques by considering the speedup 
(sp) has been shown in Table 3 and Figure 3. It has been demonstrated that proposed technique technique has significant sp 
value as compared to other load balancing techniques. 

Table 3: Speedup Analysis of proposed technique 
V Mi FFT GA ABC PSO Proposed 

     
2 4 1.72  0:13 1.76  0:13 1.89  0:11 1.93  0:10 

 8 1.98  0:09 2.03  0:07 2.05  0:08 2.12  0:08 
 16 1.87  0:12 1.99  0:09 2.13  0:07 2.21  0:07 

4 4 2.03  0:10 2.12  0:13 2.04  0:11 2.16  0:07 
 8 2.16  0:09 2.19  0:17 2.17  0:13 2.32  0:09 
 16 2.22  0:12 2.21  0:12 2.12  0:12 2.29  0:06 

8 4 2.02  0:19 2.01  0:14 2.17  0:11 2.21  0:09 
 8 2.07  0:16 2.07  0:13 2.11  0:13 2.32  0:10 
 16 2.11  0:19 2.09  0:14 2.18  0:19 2.27  0:07 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 3: Speedup analysis of proposed technique 

Table 4 and Figure 4 depict a comparative analysis of proposed technique with existing load balancing techniques i.e., GA, 
ABC and PSO by considering the Efficiency (Ef ). It has been observed that the proposed technique has significant 
improvement in terms of Ef than existing load balancing techniques. 
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Table 4: Efficiency Analysis of proposed technique 
V Mi FFT GA ABC PSO Proposed 

      
2 4 0.82  0:057 0.85  0:057 0.87  0:053 0.91  0:051 

 8 0.81  0:062 0.84  0:048 0.88  0:043 0.93  0:031 
 16 0.79  0:068 0.81  0:043 0.89  0:039 0.95  0:027 

4 4 0.48   0:278 0.53  0:217 0.58  0:194 0.73  0:094 
 8 0.67  0:142 0.73  0:137 0.74  0:125 0.87  0:071 
 16 0.69  0:136 0.78  0:128 0.83  0:079 0.89  0:039 

8 4 0.23   0:291 0.26  0:215 0.30  0:206 0.42  0:134 
 8 0.37  0:247 0.40  0:195 0.51  0:141 0.64  0:091 
 16 0.61  0:194 0.68  0:148 0.79  0:092 0.82  0:086 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Efficiency analysis of proposed technique 

The comparison between proposed technique, GA, ABC and PSO has been demonstrated in Table 5 and Figure 5 on the basis of 
Jt analysis. It has been observed that proposedtechnique has significant improvement over other load balancing technique on the 
basis of Jt. 

Table 5: Utilization Analysis of proposed technique 

V Mi FFT GA ABC PSO Proposed 
      

2 4 0.64  0:418 0.71  0:398 0.74  0:296 0.87   0:178 

 8 0.76  0:259 0.79  0:341 0.82  0:241 0.89  0:154 

 16 0.79  0:241 0.82  0:194 0.86  0:214 0.90  0:047 

4 4 0.41  0:214 0.45  0:209 0.48  0:182 0.54  0:134 

 8 0.64  0:197 0.69  0:189 0.74  0:137 0.78  0:096 

 16 0.78  0:083 0.85  0:073 0.91  0:068 0.94  0:036 

8 4 0.16  0:319 0.18  0:301 0.20  0:194 0.33  0:192 

 8 0.32  0:213 0.38  0:191 0.41  0:147 0.54  0:107 

 16 0.58  0:165 0.64  0:116 0.69  0:116 0.79  0:064 
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Figure 5: Utilization analysis of proposed technique 

Therefore, experimental results have shown that the proposed technique based load balancing tech-nique outperforms other 
techniques. Therefore, the proposed technique technique is more suitable for real-time cloud computing environment to provide 
high availability to cloud users. 

VI. CONCLUSION 
Majority of the existing metaheuristic techniques suffer from one of these issues: premature conver-gence, poor convergence 
speed, initially selected random solutions and stuck in local optima. Also, ma-jority of existing techniques have focused on the 
scheduling of independent jobs only. The effectiveness of proposed technique has been evaluated by comparing the 
performance of proposed technique with GA, ABC and PSO based load balancing techniques. It has been observed that the 
proposed technique improved speedup, efficiency and utilization by 1:74%, 0:87%, and 1:20%, respectively than GA. The pro-
posed technique reduced makespan, energy consumption and load imbalance rate by 8:76%, 1:46% and 3:25%, respectively 
than GA. Compared to PSO it has been evaluated that proposed technique improved speedup, efficiency and utilization by 
1:47%, 0:78% and 1:10% respectively. Also, it has been shown that proposed technique reduced makespan, energy 
consumption and load imbalance rate by 7:46%, 1:32% and 3:06% respectively. Comparisons between proposed technique and 
ABC showed that proposed tech-nique improved speedup, efficiency and utilization by 1:20%, 0:60% and 0:86% respectively 
and reduced makespan, energy consumption and load imbalance rate by 6:17%, 1:27% and 2:83% respectively. 
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