

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 7 Issue: III Month of publication: March 2019 DOI: http://doi.org/10.22214/ijraset.2019.3011

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

A Connection between Pythagorean Triangle and Sphenic Numbers

S. Mallika

Assistant professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy- 620 002

Abstract: This paper concerns with the problem of obtaining many Pythagorean triangles where, in each Pythagorean triangles, the expression $\frac{2*Area}{Perimeter} + H - a$ Leg is represented by a Sphenic number and Sphenic palindrome number respectively. Also, we present the number of primitive and non-primitive Triangles.

Keywords: Pythagorean triangles, Sphenic numbers, Sphenic Palindrome numbers, Primitive and non-primitive triangles.

I. INTRODUCTION

Number theory is the Queen of Mathematics. It is one of the largest and oldest branches of mathematics. We may note that there is a one to one correspondence between the polygonal numbers and the sides of polygon. Apart from the above patterns of numbers, Harshed numbers ,Nasty numbers and Dhuruva numbers have been considered in connections with Pythagorean triangles in [1-12]. In this communication, we search for patterns of Pythagorean triangles such that, in each of which, the expression $\frac{2*\text{Area}}{\text{Perimeter}} + \text{H} - \text{a}$ Leg is represented by a Sphenic number and Sphenic palindrome number and they are exhibited in sections A

and B.

II. DEFINITION

1) Palindrome Number: Palindrome number is one that is the same when the digits are reversed.

2) Sphenic Number: A Sphenic number is a positive integer which is the product of exactly three distinct prime numbers.

3) Sphenic Palindrome Number: A Sphenic number which is palindrome is called a Sphenic palindrome number.

III.METHOD OF ANALYSIS

Let T(x, y, z) be a Pythagorean triangle where

$$x = m^{2} - n^{2}, y = 2mn, z = m^{2} + n^{2}$$
(1)

Denote the area, perimeter and hypotenuse of T(x, y, z) by A,P and H respectively.

1) Section A: $\frac{2A}{P} + H - y = \alpha$, a Sphenic number of orders 3 and 4.

The problem under consideration is mathematically equivalent to solving the Diophantine equation

$$m(m-n) = \alpha \tag{2}$$

Given α , it is possible to obtain the values of m and n satisfying (2). Knowing m, n and using (1) one obtains Pythagorean triangles, each satisfying the relation, $\frac{2A}{P} + H - y = \alpha$, a Sphenic number. It is worth to note that there are only four Pythagorean triangles as the Sphenic number is a product of exactly three distinct prime numbers, A few illustrations are presented in Table 1 below.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

Table 1 : $\frac{2A}{P} + H - y = a$	sphenic number
--------------------------------------	----------------

m	n	х	у	Z	$\frac{2A}{P} + H - y$	Remark	
23	13	360	598	698	230	Two of the triangles are primitive and two are	
46	41	435	3772	3797	230	non-primitive triangles.	
115	113	456	25990	25994	230		
230	229	459	105,340	105,341	230		
37	27	640	1998	2098	370	Two of the triangles	
74	69	715	10212	10237	370	non-primitive triangles.	
185	183	736	67710	67714	370		
370	369	739	273060	273061	370		
43	28	1065	2408	2633	645	All the four triangles are	
129	124	1265	31992	32017	645	primitive triangles	
215	212	1281	91160	91169	645		
645	644	1289	830760	830761	645		
131	121	2520	31702	31802	1310	Two of the triangles	
262	257	2595	134668	134693	1310	non-primitive triangles.	
655	653	2616	855430	855434	1310		
1310	1309	2619	3429580	3429581	1310		
61	28	2937	3416	4505	2013	All the four triangles	
183	172	3905	62952	63073	2013	are primitive	
671	668	4017	896456	896465	2013	triangles	
2013	2012	4025	8100312	8100313	2013		
65	24	3649	3120	4801	2665	All the four triangles	
205	192	5161	78720	78889	2665	are primitive	
833	528	415105	879648	972673	2665	triangles	
2665	2664	5329	14199120	14199121	2665		

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

2) Section B: $\frac{2A}{P} + H - y = \alpha$, a Sphenic palindrome number of order 3 and 4.

The problem under consideration is mathematically equivalent to solving the Diophantine equation $m(m-n) = \alpha$. Given α , it is possible to obtain the values of m and n satisfying (2). Knowing m, n and using (1) one obtains Pythagorean triangles, each satisfying the relation $\frac{2A}{P} + H - y = \alpha$, a sphenic palindrome number. A few illustrations are presented in Table 2 below.

			V		$\frac{2A}{H} + H - v$	Remarks
m	n	Х	У	Z	P	
47	41	528	3854	3890	282	One is non-primitive.and all the other triangles are primitive triangles
94	91	555	17108	17117	282	
141	139	560	39198	39202	282	
282	281	563	158484	158485	282	
31	17	672	1054	1250	434	Two of the triangles are primitive and two are non-primitive triangles.
62	55	819	6820	6869	434	
217	215	864	93310	93314	434	
434	433	867	375844	375845	434	
51	32	1577	3264	3625	969	All the triangles are primitive triangles
57	40	1649	4560	4849	969	
323	320	1929	206720	206729	969	
969	968	1937	1875984	1875985	969	
187	168	6745	62832	63193	3553	All the triangles are primitive triangles
209	192	6817	80256	80545	3553	
323	312	6985	201552	201673	3553	
3553	3552	7105	25240512	25240513	3553	
239	206	14685	98468	99557	7887	All the triangles are
717	706	15653	1012404	1012525	7887	primitive triangles
2629	2626	15765	13807508	13807517	7887	
7887	7886	15773	124393764	124393765	7887	
319	288	18817	183744	184705	9889	All the triangles are
341	312	18937	212784	213625	9889	primitive triangles
899	888	19657	1596624	1596745	9889	
9889	9888	19777	195564864	195564865	9889	

Table 2: $\frac{2A}{P} + H - y$	= Sphenic palindrome number.
r	

IV.CONCLUSION

In this paper, we have made an attempt to find Pythagorean triangles in connection with Sphenic numbers and Sphenic palindrome numbers. To conclude, one may search for other choices of Pythagorean triangles for other Sphenic numbers of higher orders.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

REFERENCES

- [1] W.Sierpinski Pythagorean triangles, Dover publications, INC, Newyork, 2003.
- [2] M.A.Gopalan and A.Vijaysankar, "Observations on a Pythagorean problem", Acta Ciencia Indica, Vol.XXXVI M.No.4, 517-520, 2010.
- [3] M.A.Gopalan, A.Gnanam and G.Janaki, 'A Remarkable Pythagorean problem' Acta Ciencia Indica, Vol.XXXIII M, No, 4, 1429- 1434, 2007.
- [4] M.A.Gopalan and A.Gnanam, 'Pythagorean triangles and Polygonal numbers International Journal of Mathematical Sciences, Vol 9, No 1-2, 211-215, 2010.
- [5] M.A.Gopalan and G.Janaki, 'Pythagorean triangle with Area Perimeter as a special number' Bulletin of pure and Applied sciences, Vol 27(2), 393-402, 2008.
- [6] M.A.Gopalan and G.Janaki, 'Pythagorean triangle with nasty number as a leg' Journal of Applied Analysis and Applications, Vol 4, No 1-2, 13-17, 2008.
- [7] G.Janaki and R.Radha, 'Special Pythagorean triangle and six digit Harshad numbers' IJIRSET, Vol. 5, Issue 3, 3931-3933, March 2016.
- [8] G.Janaki and R.Radha, 'Special pairs of Pythagorean triangle and Harshad numbers' Asian Journal of Science and Technology, volume .7, Issue. 8, 3397-3399, August 2016.
- [9] G.Janaki and P.Saranya, 'Pythagorean Triangle with Area/Perimeter as a Jarasandha numbers of orders 2 and 4' IRJET, Volume .3, Issue .7, 1259-1264, July 2016.
- [10] G.Janaki and R.Radha, 'Pythagorean Triangle with Area/Perimeter as a Harshad number of digits 4,5 and 6' IJRASET, Volume. 5, Issue. 12, 1754-1762, December 2017.
- [11] G.Janaki and P.Saranya, 'Special Pythagorean triangles in connection with the Narcissistic Numbers of order 3 and 4' AIJRSTEM, 14(2), 150-153, 2016.
- [12] G.Janaki and P.Saranya, 'Special pairs of Pythagorean triangles and Narcissistic numbers', IJMRD, Vol. 3, Issue. 4, 106-108, April 2016.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)