

3 IV April 2015

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
767

A Guarded Cloud Repository with Collective
Servers

Ashok kumar.C1, Sathyadevi.S2
1Department of Information Technology, 2Department of Electronics and Communication Engineering

 PSNA College of Engg & Tech - Dindigul

Abstract — Cloud Computing is a general term used to describe a new class of network based computing that takes place
over the Internet, basically a step on from Service Computing, a collection/group of unified and networked hardware,
software and Internet infrastructure. These platforms cover the complexity and details of the underlying framework from
users and applications by providing very simple graphical interface or API. It is basically the collection of computers on
the internet that companies are using to offer their services. One cloud service that is being offered is a revolutionary
repository method for your data. From music files to pictures to conscious documents, the cloud invisibly backs up your
files and folders and alleviates the potentially endless and costly search for extra repository space. Our structure is fully
meshed with Encryption, keeping and recall process. Introduce a boundary delegate re-encryption method and it mesh
with decentralized erasure code such that a protected distributed scheme is formulated. Evaluate and offer appropriate
limitations for the number of copies of an information transmitted to repository servers and the number of repository
servers queried by a key server. These restrictions allow more flexible regulation between the number of repository
servers and robustness.
Keywords — Decentralized erasure code, delegate re-encryption, boundary cryptography, protected repository system.

I. INTRODUCTION
Data robustness is a major requirement for repository systems. There have been many proposals of keeping data over
repository servers [1], [2], [3], [4], [5]. One way to serve data robustness is to replicate a information such that each
repository server stores a copy of the message. It is very robust because the information can be recall as long as one
repository server survives. Another way is to encode a information of k pattern into a codeword of n pattern by erasure
coding. To store a message, each of its code word patterns is stored in a different repository server. A repository server
failure corresponds to an erasure error of the codeword symbol. The number of failure servers is under the tolerance
boundary of the erasure code, the information can be recovered from the codeword pattern stored in the available repository
servers by the decoding process. This serves a tradeoff between the repository size and the tolerance boundary of failure
servers. A decentralized erasure code is an erasure code that independently computes each codeword symbol for a message.
Thus, the encoding process for a information can be split into n parallel tasks of generating codeword pattern. A
decentralized erasure code is suitable for use in a distributed repository system. After the information pattern is sent to
repository servers, each repository server independently computes a code-word symbol for the received information pattern
and stores it. This finishes the encoding and keeping process. The recovery process is the same.
Keeping data in a third party’s cloud scheme causes serious concern on data confidentiality. In order to serve strong
confidentiality for messages in repository servers, a user can encrypt messages by a cryptographic method before apply-ing
an erasure code method to encode and store messages. When it wants to use a message, it needs to retrieve the codeword
pattern from repository servers, decode them, and then decrypt them by using cryptographic keys. There are three problems
in the above straightforward integration of encryption and encoding. First, the user has to do most calculation and the
communication traffic between the user and repository servers is high. Second, the user has to manage his cryptographic
keys. If the user’s device of keeping the keys is lost or compromised, the security is broken. Finally, besides data keeping
and retrieving, it is hard for repository servers to directly support other functions. Repository servers cannot directly forward
a user’s messages to another one. The owner of messages has to retrieve, decode, decrypt and then forward them to another
user.

II. RELATED WORK
A. Distributed Repository Systems

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
768

Network-Attached Storage (NAS) [7] and the Network File Scheme(NFS) [8] serve extra wants to share his messages, It
sends a re-encryption key to the repository server. The repository server re-encrypts the encrypted messages for the
authorized user. Their schemehas data confidentiality and supports the data forwarding function. Our work further integrates
encryp-tion, re-encryption, and encoding such that repository robust-ness is strengthened.

Figure 1.Distributed repository system

B. Delegate Re-Encryption Designs
Delegate re-encryption designs are proposed by Mambo and Okamoto [14] and Blaze et al. [15]. In a delegate re-encryption
design, a delegate server can transfer a cipher text under a public key PKA to a new one under another public key PKB by
using the re-encryption key RKA!B. The server does not know the plaintext during transformation. Ateniese et al. [16]
proposed some delegate re-encryption designs and applied them to the sharing function of protected repository systems. In
their work, messages are first encrypted by the owner and then stored in a repository server. When a user key server KSi
holds a key share SKA;i, 1 _ i _ m. The key is shared with a boundary. The data forwarding point, user A forwards his
encrypted information with an identifier ID stored in repository servers to user B such that B can decrypt the forwarded
information by his secret key. , A uses his secret key SKA and B’s public key PKB to compute a re-encryption key
RKIDA!B and then sends RKIDA!B to all repository servers. Each repository server uses the re-encryption key to re-encrypt
its codeword symbol for later retrieval requests by B. The re-encrypted codeword symbol is the combination of cipher texts
under B’s public key. In order to distinguish re-encrypted codeword pattern from intact ones, we call them original
codeword pattern and re-encrypted codeword pattern, respectively.
In the data retrieval point, user A requests to retrieve a information from repository servers. The information is either stored
by him or forwarded to him. User A sends a retrieval request to key servers. Upon receiving the retrieval request and
executing a proper authentication process with user A, each key server KSi requests u randomly chosen repository servers to
get codeword pattern and does partial decryption on the received codeword pattern by using the key share SKA;i. Finally,
user A combines the partially decrypted codeword pattern to obtain the original information.

C. Integrity Checking Functionality
The important functionality about cloud repository is the function of integrity checking. After a user stores data into the
repository system, he no longer possesses the data at hand. The user may want to check whether the data are properly stored
in repository servers. The concept of provable data possession [20], [21] and the notion of proof of repository [22], [23], [24]
are proposed. Public auditability of stored data is addressed in [25]. Nevertheless all of them consider the messages in the
clear text form.

III. DESIGNS AND COMPONENTS USED
A. RSA Algorithm
RSA is an algorithm for a public key encryption system. i.e this is an asymmetric cipher , one person has a private key and
gives out a public key, any has the public key can encrypt some informationor data then only the person with the private key
can read this information, not even the person who encoded the original informationwith the public key can now decoded
this. The idea behind this to prevent” man in the middle attacks”.

B. Public Key
In cryptography, a public key is a value served by some designated authority as an encryption key that combined with a

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
769

private key derived from the public key, that can be used to efficient encrypt information and digital signatures. The use of
combined public and private key is known as asymmetric cryptography. A scheme for using public keys is called a public
key infrastructure (PKI).

C. Symmetric Vs Asymmetric Algorithm
When using symmetric algorithms, both parties share the same key for en-and decryption. To serve privacy, this key needs
to be stored secret. Once somebody else gets to know the key, it is not safe anymore. Symmetric algorithms have the
advantage of not consuming too much computing power. Asymmetric algorithm use pairs of keys. One is used for
encryption and the other one for decryption. The decryption key is typically kept secretly, therefore called “Private key” or “
secret key” , While the encryption key is spread to all who might need to send encrypted information, therefore called “
Public key”. Everybody having the public key is able to send encrypted information to the owner of the secret key. The
secret key can`t be reconstructed from the public key. Asymmetric algorithms are much slower than symmetric. Therefore,
in many applications, a merger of both is being used. The asymmetric keys are used for authentication and after this have
been successfully done. One or more symmetric keys are generated and exchange using the asymmetric encryption.

D. Key Generation
RSA involves a public key and a private key. The public key can be know to everyone and is used for encrypting message.
Information encrypted with the public key can only be decrypted using the private key. The keys foe the RSA algorithm are
generated the following ways: Generate two large random primes, p and q, of approximately equal size such that their
product n=pq is of the required bit length, e.g. 1024bits.

1) Compute n=pq and phi=(p-1)(q-1)
2) Choose an integer e,1<e<phi, such that gcd(e,phi)=1
3) Compute the secret exponent,1<d<phi, such that ed=1(mod phi)
The public key is(n,e) and the private key(d,p,q). Keep all the values d,p,q and phi secret, n knows as the modules.
1) E is known as the public exponent or encryption exponent or just the exponent.
2) D is known as the secret exponent or decryption exponent.

E. File Rifting
As shown in the figure 7.2 the input text file is given by the user, according to their wish they splits the file into chunks
mentioned by them. For providing effective data exchange and prevention of file from intruders they split the file into
number of chunks. The chunks splitting are based on the user given inputs.

F. Encryption
Encryption is the conversion of data into a form, called a cipher text that cannot be easily understood by unauthorized
people. Splitter files are encrypted using corresponding keys. Here RSA algorithm is used for encryption. The encryption
design is used for providing high security. This is first step keeping process.

Figure 2 Encryption

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
770

G. Delegate Re-Encryption Design
Delegate re-encryption designs are cryptosystems which allow third-parties (Proxies) to alter a cipher text which has been
encrypted for one party, so that it may be decrypted by another. Crypto scheme consists of three algorithms. That is One for
key generation, one for encryption, One for decryption. A delegate server is a server that acts as an intermediate for request
from clients seeking resources from other servers. In the proposed scheme encrypted files are re-encrypted using boundary
delegate re-encryption design.

H. Data Repository On Cloud
As mention earlier the input file which was splitted and encrypted was stored in the cloud server, where the user specified.
Cloud was having multiple servers. The re-encrypted chunks are stored in the cloud servers using the ip address of the server
name.

I. Data Retrieval On Cloud
Data are downloaded from the cloud , and then the files are re-decrypted by referring the corresponding keys in key server.
Re-decrypted files are then decrypted. Decrypted files are joined using joining function. Then we get the original text file.

IV. RESULTS AND DISCUSSION

A. A Protected Cloud Repository Scheme with Protected Forwarding
Data retrieval: There are two cases for the data retrieval point. The first case is that a user A retrieves his own message.
When user A wants to retrieve the information with the identifier ID, he informs all key servers with the identity token _. A
key server first retrieves original codeword pattern from u randomly chosen repository servers and then performs partial
decryption ShareDecð_Þ on every recall original codeword symbol C0. The result of partial decryption is called a partially
decrypted codeword symbol. The key server sends the partially decrypted codeword pattern _ and the coefficients to user A.
After user A collects replies from at least t key servers and at least k of them are originally from distinct repository servers,
he executes Combineð_Þ on the t partially decrypted codeword pattern to recover the blocks m1; m2; . . . ; mk. The second
case is that a user B retrieves a information forwarded to him. User B informs all key servers directly. The collection and
combining parts are the same as the first case except that key servers retrieve re-encrypted codeword pattern and perform
partial decryption Share-Decð_Þ on re-encrypted codeword pattern.

B. Analysis
The calculation cost by the number of pairing process, modular exponentiations in G1 and G2, modular multiplications in
G1 and G2, and arithmetic process over GF ðpÞ. These process are denoted as Pairing, Exp1, Exp2, Mult1, Mult2, and Fp,
respectively. The cost is summarized in Table 1. Computing an Fp takes much less time than computing a Mult1 or a Mult2.

The methodology of analysis is similar to that in [13] and [6]. However, we consider a different scheme model from the one
in [13] and a more flexible parameter setting for n ¼ akc than the settings in [13] and [6]. The difference between our
schememodel and the one in [13] is that our scheme model has key servers. In [13], a single user queries k distinct repository
servers to retrieve the data. On the other hand, each key server in our scheme independently queries u repository servers.
The use of distributed key servers increases the level of key protection but makes the analysis harder.

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
771

V. CONCLUSIONS

The performance and safety will be high compared to the existing system because of using encryption and re-encryption, for
the data kept in the cloud. In olden system the data are stored in single server and no encryption decryption techniques are
used. So data loss is high .Cryptographic keys are managed by the user. But in the new system, data are kept in numerous
servers; proxy re-encryption scheme is used for providing security and confidentially. Cryptographic keys are maintained by
the key server. The user provides the input text file and it was safely stored in the cloud servers by means of doing
encryption and proxy re-encryption design.

REFERENCES

[1] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore:
An Architecture for Global-Scale Persis-tent Storage,” Proc. Ninth Int’l Conf. Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 190-201, 2000.

[2] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly Durable, Decentralized Storage Despite Massive Correlated Fail-ures,” Proc. Second
Symp. Networked Systems Design and Implemen-tation (NSDI), pp. 143-158, 2005.

[3] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The Least-Authority Filesystem,” Proc. Fourth ACM Int’l Workshop Storage Security and Survivability
(StorageSS), pp. 21-26, 2008.

[4] H.-Y. Lin and W.-G. Tzeng, “A Secure Decentralized Erasure Code for Distributed Network Storage,” IEEE Trans. Parallel and Distributed Systems,
vol. 21, no. 11, pp. 1586-1594, Nov. 2010.

[5] D.R. Brownbridge, L.F. Marshall, and B. Randell, “The Newcastle Connection or Unixes of the World Unite!,” Software Practice and Experience,
vol. 12, no. 12, pp. 1147-1162, 1982.

[6] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design and Implementation of the Sun Network Filesystem,”
Proc. USENIX Assoc. Conf., 1985.
[7] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus: Scalable Secure File Sharing on Untrusted Storage,” Proc. Second USENIX

Conf. File and Storage Technologies (FAST), pp. 29-42, 2003.
[8] S.C. Rhea, P.R. Eaton, D. Geels, H. Weatherspoon, B.Y. Zhao, and J. Kubiatowicz, “Pond: The Oceanstore Prototype,” Proc. Second USENIX Conf.

File and Storage Technologies (FAST), pp. 1-14, 2003.
[9] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G.M. Voelker, “Total Recall: System Support for Automated Availability Management,” Proc.

First Symp. Networked Systems Design and Implementation (NSDI), pp. 337-350, 2004.
[10] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Ubiqui-tous Access to Distributed Data in Large-Scale Sensor Net-works through

Decentralized Erasure Codes,” Proc. Fourth Int’l Symp. Information Processing in Sensor Networks (IPSN), pp. 111-117, 2005.
[11] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decen-tralized Erasure Codes for Distributed Networked Storage,” IEEE Trans. Information

Theory, vol. 52, no. 6 pp. 2809-2816, June 2006.
[12] M. Mambo and E. Okamoto, “Proxy Cryptosystems: Delegation of the Power to Decrypt Ciphertexts,” IEICE Trans. Fundamentals of Electronics,

Comm. and Computer Sciences, vol. E80-A, no. 1, pp. 54-63, 1997.
[13] M. Blaze, G. Bleumer, and M. Strauss, “Divertible Protocols and Atomic Proxy Cryptography,” Proc. Int’l Conf. Theory and Applica-tion of

Cryptographic Techniques (EUROCRYPT), pp. 127-144, 1998.
[14] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage,”

www.ijraset.com Volume 3 Issue IV, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
772

ACM Trans. Information and System Security, vol. 9, no. 1, pp. 1-30, 2006.
[15] Q. Tang, “Type-Based Proxy Re-Encryption and Its Construction,” Proc. Ninth Int’l Conf. Cryptology in India: Progress in Cryptology

(INDOCRYPT), pp. 130-144, 2008.
[16] G. Ateniese, K. Benson, and S. Hohenberger, “Key-Private Proxy Re-Encryption,” Proc. Topics in Cryptology (CT-RSA), pp. 279-294, 2009.
[17] J. Shao and Z. Cao, “CCA-Secure Proxy Re-Encryption without Pairings,” Proc. 12th Int’l Conf. Practice and Theory in Public Key Cryptography

(PKC), pp. 357-376, 2009.
[18] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable Data Possession at Untrusted Stores,” Proc. 14th

ACM Conf. Computer and Comm. Security (CCS), pp. 598-609, 2007.
[19] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik, “Scalable and Efficient Provable Data Possession,” Proc. Fourth Int’l Conf. Security and

Privacy in Comm. Netowrks (SecureComm), pp. 1-10, 2008.
[20] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Proc. 14th Int’l Conf. Theory and Application of Cryptology and Information

Security (ASIACRYPT), pp. 90-107, 2008.
[21] G. Ateniese, S. Kamara, and J. Katz, “Proofs of Storage from Homomorphic Identification Protocols,” Proc. 15th Int’l Conf. Theory and Application

of Cryptology and Information Security (ASIACRYPT), pp. 319-333, 2009.
[22] A. Shamir, “How to Share a Secret,” ACM Comm., vol. 22, pp. 612-613, 1979.
[23] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki, “Hydrastor: A Scalable

Secondary Storage,” Proc. Seventh Conf. File and Storage Technologies (FAST), pp. 197-210, 2009.
[24] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago, G. Calkowski, C. Dubnicki, and A. Bohra, “Hydrafs: A High-Throughput File System for

the Hydrastor Content-Addressable Storage System,” Proc. Eighth USENIX Conf. File and Storage Technologies (FAST), p. 17, 2010.
[25] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P. Shilane, “Tradeoffs in Scalable Data Routing for Deduplication Clusters,”

