

2 II February 2014

www.ijraset.com Vol. 2 Issue II, February 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 117

Enhancement in File compression using Huffman
approach

Suman (Student)
Delhi Institute of Technology and Management ,

Sonepat, Gannaur

Abstract: In this paper, we are showing how we can enhance the file compression by using Huffman approach. The main aim of
the thesis is to utilize the concept of type casting and data normalization to show that it is good practice to this concept along
with Huffman Coding. We are enhancing the concept of type casting and data normalization with Huffman Coding so as to
increase the compression efficiency of Huffman Coding. Enhancement will be done in such a way that compressed data would
be decompressed there would be no loss of data i.e. integrity of Huffman Coding would remain.

Keywords: Huffman approach, Compression, Decompression, Typecasting and Data normalization.

I.INTRODUCTION

In computer science and technology, Huffman coding is
an entropy encoding algorithm used for lossless data
compression. The term refers to the use of a variable-length
code table for encoding a source symbol (such as a character in
a file) where the variable-length code table has been derived in
a particular way based on the estimated probability of
occurrence for each possible value of the source symbol. It was
developed by David A. Huffman while he was a Ph.D. student
at MIT, and published in the 1952 paper "A Method for the
Construction of Minimum-Redundancy Codes".

1.2 Huffman Approach

The technique works by creating a binary tree of nodes. These
can be stored in a regular array, the size of which depends on
the number of symbols, n. A node can be either a leaf node or
an internal node. Initially, all nodes are leaf nodes, which
contain the symbol itself, the weight (frequency of appearance)
of the symbol and optionally, a link to a parent node which
makes it easy to read the code (in reverse) starting from a leaf
node. Internal nodes contain symbol weight, links to two child
nodes and the optional link to a parent node. As a common
convention, bit '0' represents following the left child and bit '1'

represents following the right child. A finished tree has up to n
leaf nodes and n − 1 internal nodes. A Huffman tree that omits
unused symbols produces the most optimal code lengths.

The process essentially begins with the leaf nodes containing
the probabilities of the symbol they represent, and then a new
node whose children are the 2 nodes with smallest probability is
created, such that the new node's probability is equal to the sum
of the children's probability. With the previous 2 nodes merged
into one node (thus not considering them anymore), and with
the new node being now considered, the procedure is repeated
until only one node remains, the Huffman tree.

Huffman`s procedure creates the optimal code for a set of
symbols and probabilities’ subject to the constraints that the
symbols be coded one at a time . After the code has been
created coding or Decoding is accomplished in a simple look up
table manner. The code itself is an instantaneous uniquely
decodable block code. It is called a block code because each
source symbol is mapped into a fixed sequence of code
symbols.

Procedure of Huffman Algorithm

www.ijraset.com Vol. 2 Issue II, February 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 118

The Huffman algorithm generates the most efficient binary code
tree at given frequency distribution. Prerequisite is a table with
all symbols and their frequency. Any symbol represents a leaf
node within the tree.

Compression

The following general procedure has to be applied:

 search for the two nodes providing the lowest
frequency, which are not yet assigned to a parent node

 couple these nodes together to a new interior node

 add both frequencies and assign this value to the new
interior node

The procedure has to be repeated until all nodes are combined
together in a root node.

Decompression

For decoding the Huffman tree is passed through with the
encoded data step by step. Whenever a node not having a
successor is reached, the assigned symbol will be written to the
decoded data.

1.3 Lossless vs. Lossy Compression

Lossless compression algorithms usually exploit statistical
redundancy in such a way as to represent the sender's data more
concisely, but nevertheless perfectly. Lossless compression is
possible because most real-world data has statistical
redundancy. For example, in English text, the letter 'e' is much
more common than the letter 'z', and the probability that the
letter 'q' will be followed by the letter 'z' is very small.

Another kind of compression, called lossy data compression, is
possible if some loss of fidelity is acceptable. For example, a
person viewing a picture or television video scene might not
notice if some of its finest details are removed or not
represented perfectly (i.e. may not even notice compression
artifacts). Similarly, two clips of audio may be perceived as the
same to a listener even though one is missing details found in
the other. Lossy data compression algorithms introduce
relatively minor differences and represent the picture, video, or
audio using fewer bits.

1.4 Type Casting

Typecasting and coercion refer to different ways of, implicitly
or explicitly, changing an entity of one data type into another.
This is done to take advantage of certain features of type
hierarchies or type representations. One example would be
small integers, which can be stored in a compact format and
converted to a larger representation when used in arithmetic
computations. In object-oriented programming, type conversion
allows programs to treat objects of one type as one of their
ancestor types to simplify interacting with them.

Benefits of Using Type Casting

Typecast always returns the same number of bytes in the
output Y as was in the input X. For example, casting the 16-bit
integer 1000 to uint8 with typecast returns the full 16 bits in
two 8-bit segments (3 and 232) thus keeping its original value
(3*256 + 232 = 1000). The cast function, on the other hand,
truncates the input value to 255.

1.5 Database Normalization

Data normalization is a process in which data attributes within a
data model are organized to increase the cohesion of entity
types. In other words, the goal of data normalization is to
reduce and even eliminate data redundancy, an important
consideration for application developers because it is incredibly
difficult to stores objects in a relational database that maintains
the same information in several places. Table 5.1 summarizes
the three most common forms of normalization (First normal
form (1NF), Second normal form (2NF), and Third normal form
(3NF)) describing how to put entity types into a series of
increasing levels of normalization. Higher levels of data
normalization are beyond the scope of this article. With respect
to terminology, a data schema is considered to be at the level of
normalization of its least normalized entity type. For example,
if all of your entity types are at second normal form (2NF) or
higher then we say that your data schema is at 2NF.

Table 1.1 Data Normalization Rules.

Level Rule

First normal
form (1NF)

An entity type is in 1NF when it contains
no repeating groups of data.

www.ijraset.com Vol. 2 Issue II, February 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 119

Second normal
form (2NF)

An entity type is in 2NF when it is in 1NF
and when all of its non-key attributes are
fully dependent on its primary key.

Third normal
form (3NF)

An entity type is in 3NF when it is in 2NF
and when all of its attributes are directly
dependent on the primary key.

II. Proposed work

In Matlab we have implemented Huffman coding in a two step
procedure the first step is converting normal file to Huffman file
and getting the compressed code outside. In next step or second
step we convert that compressed code to back to original text
code.

2.1 Proposed Compression Method
The proposed technique can be clearly understood by the block
diagram below:

Figure 2.1 Proposed Compression Diagram

In the above algorithm we can see that first our Matlab code is
taking data from the user. After that it is converting that data to
UINT8 format which can be compressed using Matlab if by any
chance data is not in UINT8 format then it cannot be
compressed. After it is converted and we apply Huffman
compression and get a compressed code.

Compression

The following general procedure has to be applied:

 search for the two nodes providing the lowest
frequency, which are not yet assigned to a parent node

 couple these nodes together to a new interior node

 add both frequencies and assign this value to the new
interior node

The procedure has to be repeated until all nodes are combined
together in a root node.

Example: "abracadabra"

Symbol Frequency

a 5

b 2

r 2

c 1

d 1

According to the outlined coding scheme the symbols
"d" and "c" will be coupled together in a first step. The
new interior node will get the frequency 2.

STEP 1:

Symbol Frequency Symbol Frequency

a 5 a 5

b 2 b 2

Take normal text
from user

Convert Data
into Huffman
Applicable form

Check
format

Show incorrect

format

Apply Huffman

Algorithm

STOP

START

www.ijraset.com Vol. 2 Issue II, February 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 120

r 2 r 2

c 1 -----------> 1 2

d 1

Figure 2.3 Code tree after the 1st step

STEP 2:

Symbol Frequency Symbol Frequency

a 5 a 5

b 2 b 2

r 2 -----------> 2 4

1 2

Figure 2.4 Code tree after the 2nd step:

STEP 3:

Symbol Frequency Symbol Frequency

a 5 a 5

2 4 -----------> 3 6

b 2

Code tree after the 3rd step:

Fig. 2.5 Code tree after the 3rd step.

Step 4:

Symbol Frequency Symbol Frequency
3 6 -----------> 4 11

a 5

www.ijraset.com Vol. 2 Issue II, February 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 121

Fig.2.6 Code tree after the 4th step:

Code Table

If only one single node is remaining within the table, it forms
the root of the Huffman tree. The paths from the root node to
the leaf nodes define the code word used for the corresponding
symbol:

Symbol Frequency Code Word
a 5 0
b 2 10
r 2 111
c 1 1101

d 1 1100

Complete Huffman Tree:

Figure 2.7 Complete huffman tree

Encoding:

The original data will be encoded with this code table as
follows:

Symbol Frequency Code Word
a 5 0
b 2 10
r 2 111
c 1 1101
d 1 1100

a b r a c a d a b r a
0 10 111 0 1101 0 1100 0 10 111 0

Encoded data: 23 Bit

Original data: 33 Bit

www.ijraset.com Vol. 2 Issue II, February 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 122

2.2 Proposed Decompression Method

The proposed technique can be clearly understood by the block
diagram below:

Figure2.2 Proposed Decompression Technique

Decompression

For decoding the Huffman tree is passed through with the
encoded data step by step. Whenever a node not having a
successor is reached, the assigned symbol will be written to
the decoded data.

01011101101011000101110

Encoded decoded

0 a

10 b

111 r

0 a

1101 c

0 a

1100 d

0 a

10 b

111 r

0 a

ACKNOWLEDGMENT

First of all I am thankful to almighty GOD to help me out in
every odds and buts. There are numerous people without whom
this dissertation might never have been completed. Among
those who deserve credit and our heartfelt gratitude is the most
important Mr. Rakesh Chawla for his valuable guidance and
support. Without his this work would not have been possible. I
am thankful for their constant encouragement and guidance.
Last but not the least I would like to thank the faculty members
of the Department of Computer Science Engineering for being
very supportive to me throughout these years. I am also thankful
to my friends and classmates for their valuable suggestions.

REFERENCES

1.Ternary Tree & A new Huffman Technique, IJCSNS
International Journal of Computer Science and Network
Security, Vol.10 N0.3, March 2011.

START

Take compressed
data

Apply Huffman
decompression

algorithm

Display normal data

Display compress code

Display uncompressed code

Display normal data

Stop

www.ijraset.com Vol. 2 Issue II, February 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 123

2. A Study and implementation of the Huffman Algorithm
based on Condensed Huffman Table, 2008 International
Conference on Computer Science and Software Engineering.

3. A Method for the Construction of Minimum-Redundancy
Codes David A. Huffman, Associate, IRE.(1952).

4. Typecasting, Legitimation: A Formal Theory Greta Hsu
Univ. Of California at Davis Michael t. Hannan Stanford
University.

5. Database Normalisation: Korth Refrences:A CS2
assignment.

6.Database System Concepts By SILBERSCHATZ, KORTH,
SUDARSHAN McGraw-Hill Higher Education, ISBN NO. 0-
07-120413-X

7. A Method for the Construction of Minimum-Redundancy
Codes DAVID A. HUFFMAN, ASSOCIATE,IRE.

8. A study and implementation of the Huffman Algorithm
based on condensed Huffman table, 2010 International
Conference on Computer Science and Software
Engineering.

9. Owen L.Astrachan,2004,Huffman coding:A CS2
assignment.

10. Typecasting, Legitimation , and Form Emergence: A
Formal Theory Greta Hsu Univ. of California at Davis
Michael T. Hannan Stanford University László Pólos Durham
University Running head: Typecasting, Legitimation, and Form
Emergence March 24, 2010

11. Introduction to Data Compression, Khalid Sayood.

12. D.A. Huffman, "A Method for the Construction of
Minimum Redundancy Codes", Proceedings of the I.R.E.,
September 1952, pp 1098–1102. Huffman's original article

13.http://en.wikipedia.org/wiki/Losslessdatacompression- Wiki

14. http://www.Huffman coding - Wikipedia, the free
encyclopedia.htm

15.http://en.wikipedia.org/wiki/Database_normalization-
Wikipedia

