) iJRASET

& International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGQGY

Volume: 3 Issue: v Month of publication: April 2015

DOI:

www.ijraset.com
Call: (£)08813907089 | E-mail ID: ijraset@gmail.com




Www.ijraset.com Volume 3 Issue 1V, April 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

A Novel Secure Protocol for Mining in Horizontally
Distributed Databases

B. Erubabu’, K.N. Brahmaji Rao®
PG Student, Baba Institute of Technology and Sciences, Vishakapatnam, A.P.INDIA
ZAssociate Professor, Baba Institute of Technology and Sciences, Vishakapatnam, A.P.INDIA

Abstract—For Secure mining of association rules in horizontally distributed databases we propose aprotocol based on the
Fast Distributed Mining (FDM) algorithm which is an unsecured distributed version of the Apriori algorithm. This
protocol is of two novel secure multi-party algorithms—one that computes the union of private subsets that each of the
interacting players hold, and another that tests the inclusion of an element held by one player in a subset held by another.
The proposed protocol enhances privacy with respect to the protocol of Kantarcioglu and Clifton[18]. In terms of
communication rounds, communication cost and computational cost,it is simpler and is significantly more efficient.

Index Terms—association rules, distributed databases, Fast Distributed Mining, Apriori Algorithm

l. INTRODUCTION

In the problem of secure mining of association rules in horizontally partitioned databases there are several sites(or players) that hold
homogeneous databases. The goal is to find all association rules with support at least s and confidence at least ¢, for some given
minimal support size s and confidence level c, that hold in the unified database, while minimizing the information disclosed about
the private databases held by those players. In this context we would like to protect the information in individual transactions in the
different databases and also more global information in which the goal defines the problem of secure multiparty computation. In
such problems, there are M players that hold private inputs, X3,X,,...Xm, and they wish to securely compute y=f(Xy,Xa,...Xy)for some
public function f. The players can run on their own if a protocol is devised and in order to arrive at the required output y.If no player
can learn from his view of the protocol such a protocol is considered perfectly secure. The computation is carried out by trusted
third party.Yao [32] was the first to propose a generic solution for this problem in the case of two players. The other generic
solutions, for the multi-party case, were later proposed in [3], [5], [15]. Here in the existing problem, the partial databases are the
inputs, and the list of association rules are the output.These rules hold in the unified database with support and confidence no
smaller than the given thresholds s and c. These mentioned generic solutions rely upon a description of the function f as a Boolean
circuit, they can be applied only to small inputs and functions which are realizable by simple circuits. Since ours is of more complex
settingsdifferent methods are required for this computation. In such cases, some relaxations of the notion ofperfect security might be
inevitable when looking for practical protocols, provided that the excess information is deemed benign [18], [28], [29], [31], [34].

In the problem in [18]Kantarcioglu and Clifton devised a protocol for its solution. The main part of the protocol is a sub-protocol for
the secure computation of the union of private subsets that are held by the different players which is the most costly part of the
protocol. The cryptographic primitives such as commutative encryption, oblivious transfer, and hash functions are in which the
implementation relies upon. This is also the only part in the protocol in which the players may extract from their view of the
protocol information on other databases, beyond what is implied by the final output and their own input. The leakage of information
renders the protocol not perfectly secure, the perimeter of the excess information is explicitly bounded in [18] and it is argued there
that such information leakage is innocuous, whence acceptable from a practical point of view. The proposal is an alternative
protocol for the secure computation of the union of private subsets. In terms of simplicity and efficiency as well as privacythe
proposed protocol improves upon that in [18]. The proposed protocol does not depend on commutative encryption and oblivious
transfer.lt leaks excess information only to a small number (three) of possible coalitions, unlike the protocol of [18] that discloses
information also to some single players. In addition, we claim that the excess information that our protocol may leak is less sensitive
than the excess information leaked by the protocol of [18]. We propose a protocol that computes a parameterized family of
functionsi.e threshold functions, in which the two extreme cases correspond to the problems of computing the union and intersection
of private subsets. We solve the problem of the set inclusion problem namely, the problem where Alice holds a private subset of
some ground set, and Bob holds an element in the ground set, and they wish to deter-mine whether Bob’s element is within Alice’s
subset, without revealing to either of them information about the other party’s input beyond the above described inclusion.
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A. The Fast Distributed Mining Algorithm

The proposed protocol and the protocol of [18], are based on the Fast Distributed Mining (FDM) algorithm of Cheung et al. [8],
which is considered as an unsecured distributed version of the Apriori algorithm. Any s-frequent item set must be also locally s-
frequent in at least one of the sites is the main idea behind the Apriori algorithm.In order to find all globally s-frequent item sets,
each playerreveals his locally s-frequent item sets and then the players check each of them to see if they are s-frequent also globally.
The FDM algorithm proceeds as follows:

1) Initialization: It is assumed that the players have already jointly calculated F*-*. The goal is to proceed and calculate F~.

2) Candidate Sets Generation: Each player P, computes the set of all (k—1)-item sets that are locally frequent in his site and also
globally frequent; namely, P, computes the set F&“~“™NF* He then applies on that set the Apriori algorithm in order to
generate the set BX™ of candidate k-item sets.

3) Local Pruning: For each XeB*™, P, computes suppmX). He then retains only those item sets thatare locally s-frequent. We
denote this collection of item sets by clm

4) Unifying the candidate item sets: Each player broadcasts his Cs“™ g men ait piayers computeCs:=UMea C<™

5) Computing local supports. All players compute the local supports of all item sets in C~.

6) Broadcast mining results: Each player broadcasts the local supports that he computed. From that, everyone can compute the
global support of every item set in C.*. Finally, F* is the subset of C,* that consists of all globally s-frequent k-item sets.

In the first iteration, when k = 1, the set C,*™ that the m™ player computes (Steps 2-3) is just Fs=™, namely, the set of single items
that are s-frequent in Dy. The complete FDM algorithm starts by finding all single items that are globally s-frequent. It then
proceeds to find all 2-item sets that are globally s-frequent, until it finds the longest globally s-frequent item sets. If the length of
such item sets is K, then in the (k+1)" iteration of the FDM it will find no (k+1)-item sets that are globally s-frequent, in which case
it terminates.

The privacy violation in FDM algorithm occurs in two stages: In Step 4, where the players broadcast the item sets that are locally
frequent in their private databases, and in Step 6, where they broadcast the sizes of the local supports of candidate item sets.
Kantarcioglu and Clifton [18] proposed secure implementations of those two steps. The modification is regard to the secure
implementation of Step 4, which is the more costly stage of the protocol, and the one in which the protocol of [18] leaks excess
information.

Similar to [18], we assume that the players are semi-honest, namely, they follow the protocol but try to extract as much information
as possible from their own view [17], [26], [34].

1. PROPOSED FULLY SECURE PROTOCOL

The players may dispense the local pruning and union computation in the FDM algorithm (Steps 2-4) and, instead, test all candidate
item sets in ApdF-'P to see which of them are globally s-frequent. Such a protocol is fully secure, as it reveals only the set of
globally s-frequent item sets but no further information about the partial databases. However, as discussed in [18], the protocol
would be much more costly since it requires each player to compute the local support of |Ap(F<%)| item sets instead of only |C,¥|
item sets.In addition, the players will have to execute the secure comparison protocol of [32] to verify inequality for |Ap(Fs<Y)|
rather than only |C¥| item sets. Both types of added operations are very costly: the time to compute the support size depends linearly
on the size of the database, while the secure comparison pro-tocol entails a costly oblivious transfer sub-protocol. Since, as shown in
[9], |Ap(Fskfl) is much larger than |C¥|, the added computing time in such a protocol is expected to dominate the cost of the secure
computation of the union of all locally s-frequent item sets. Hence, the enhanced security offered by such a protocol is accompanied
by increased implementation costs.
1. EXPERIMENTAL EVALUATION

In this chapter we describe the synthetic database which we used for our experimentation and how the database was split
horizontally into partial a database which describes the experiments we conducted. The results are also given in this section.

A. Synthetic Database Generation
We use the databases in our experimental evaluation are synthetic databases. These databases are generated using the same
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techniques that were introduced in [1].These were also used in subsequent studies such as [8], [18], [23]. The parameter values that
were used in generating the synthetic database which were used in Table 1. The reader is referred to [8], [18], [23] for a description
of the synthetic generation method and the meaning of each of those parameters.

TABLE 1: Parameters for Generating the Synthetic Database

Parameter | Interpretation Value
N Number of transactions in the wholc databasc 500.000
L Number of items 1000
Ay Transaction average size 10

Ay Average size of maximal polentally large ilemsels | 4

Ny Number of maximal potentially large itemsets 2000
cS Clustering size 3

rs Pool size 60

Cor Correladon level 0.5
MF Multiplying factor 1800

B. Distributing the Database

Given a generated synthetic database D of N transactions and a number of players M, we create an artificial split of D into M partial
databases, D, 1<m< M, in the following manner: For each 1<m< M we draw a random number w,from a normal distribution with
mean 1 and variance0.1, where numbers outside the interval [0.1,1.9] are ignored. Then, we normalize those numbers so
thaty ™ -;wm= 1.We randomly split D into m partial databases of expected sizes of w,N, 1< m< M, as follows: Each transaction tcD
is assigned at random to one of the partial databases, so that Pr(teDy,) =W, 1<m<M.

C. Experimental Setup

By comparing the performance of two secure implementations of the FDM algorithm i.ein the first implementation, we executed the
unification step (Step 4 in FDM) using Protocol UNIFI-KC, where the commutative cipher was 1,024-bit RSA [25]; in the second
implementation (denoted FDM) we used our Protocol UNIFI, where the keyed-hash function was HMAC [4]. In both
implementations, we implemented Step 5 of the FDM algorithm in the secure manner that was described in Section 3. The two
implementations with respect to three measures were tested.

1) Total computation time of the complete protocols (FDM-KC and FDM) over all players. That measure includes the time to
identify the globally s-frequent item sets and the Apriori computation time.

2) Total computation time of the unification protocols only (UNIFI-KC and UNIFI) over all players.

3) Total message size.

We ran three experiment sets, where each set tested the dependence of the above measures on a different parameter i.eN—the
number of transactions in the unifieddatabase,M—the number of players, ands—the threshold support size. In our basic
configuration, we took N=500,000, M=10, and s=0.1. In the first experiment set, we kept M and s fixed and tested several values of
N. In the second experiment set, we kept N and s fixed and varied M. In the third set, we kept N and M fixed and varied s. The
results in each of those experiment sets are shown in the next section. All experiments were implemented in C# (.net 4) and were
executed on an Intel(R) Core(TM)i7-2620M personal computer with a 2.7 GHz CPU, 8 GB of RAM, and the 64-bit Windows 7
Professional SP1 operating system.

D. Experimental Results

The values of the three measures that were listed in the section above as a function of N are shown in the figure 1. In all of those
experiments, the value of M and s remained unchanged—M=10 and s=0.1. Fig. 2 shows the values of the three measures as a
function of M; here, N¥4500,000 and s=0.1. Fig. 3 shows the values of the three measures as a function of s; here,N = 500,000 and
M = 10. The first set of experiments shows that N has little effect on the runtime of the unification protocols, UNIFI-KC and UNIFI,
nor on the bit communication cost. However, since the time to identify the globally s-frequent item sets (see Section 3) does grow
linearly with N, and that procedure is carried out in the same manner in FDM-KC and FDM, the advantage of Protocol FDM over
FDM-KC in terms of runtime decreases with N. While for N=100,000, Protocol FDM is 22 times faster than Protocol FDM-KC, for
N = 500,000 it is five times faster.

The second set of experiments shows how the computation and communication costs increase with M. The improvement factor in
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the bit communication cost, as offered by Protocol UNIFI with respect to Protocol UNIFI-KC, is in accord with our analysis.
Finally, the third set of experiments shows that higher support thresholds entail smaller computation and communication costs since
the number of frequent item sets decreases.

Total computation time

|

Time to unify candidate itemsets

1000

Twe hocs)

100000 200000 30000 300000 300000

Total message size
1000

Fig. 1. Computation and communication costs versus the number of transactions N

(AVA CONCLUSION

The protocol is proposed for secure mining of association rules in horizontally distributed databases that improves significantly
upon the current leading protocol [18] in terms of privacy and efficiency. In our proposed protocol the main ingredient is a novel
secure multi-partyprotocol for computing the union (or intersection) of private subsets that each of the interacting players hold. The
other ingredient is a protocol that tests the inclusion of an element held by one player in a subset held by another. Those protocols
exploit the fact that the underlying problem is of interest only when the number of players is greater than two.

This study suggests to devise an efficient proto-col for inequality verifications that uses the existence of a semi-honest third party.
This further improve upon the communication and computational costs of the second and third stages of the protocol of [18].This
study also suggests is the implementation of the techniques presented here to the problem of distributed association rule mining in
the vertical setting [31], [33], the problem of mining generalized association rules [27], and the problem of subgroup discovery in
horizontally partitioned data [16].
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