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Abstract: This research proposes to implement transmogrification process in the Imputation procedures to overcome the 
challenges in missing values. Appropriate data pre-processing methods in data mining plays significant role to ensure good 
quality of data. The data pre-processing tasks include  identification of outliers, smoothening noisy data and overcoming 
inconsistent data. Issues related to data incompleteness, still remains a challenge to many researchers. The transmogrified 
method uses mathematical approach and Index segmentation based Imputation Algorithm for missing data imputation. The 
databases were used to demonstrate the performance of the proposed method. The proposed algorithm is evaluated by extensive 
experiments and comparison with KNNI, MSC, AHC, EM-GMM and FEM-GMM The results showed that the proposed 
algorithm has better performance than the existing imputation algorithms in terms of classification accuracy. 
Keywords: k-Nearest neighbor, Mean-shift Clustering (MSC), Naïve Bayesian Imputation and Expectation – Maximization 
Clustering, Gaussian Mixture 

I. INTRODUCTION 
Missing values has long been an unavoidable problem that occurs to almost data-driven solutions. There are various causes such 
as incomplete data collection, data entry errors, incompetent data acquisition from experiments, and unfinished responses to a 
questionnaire [1]. This raises a significant problem towards data analysis, especially to those learning Models that are compatible 
only with a complete data set. Over the past decades, Provision of innovative research aiming to fill in missing vales is 
continuously developed [2]. A rich collection of data pre-processing techniques has been made available, including zero 
imputation, average imputation, minimum imputation, maximum imputation, expectation maximization, linear regression 
imputation and k-nearest neighbours. Unlike the conventional approach that excludes any record with missing values, the 
aforementioned statistical and machine learning methods attempt to predict those with the values close to the original data. In this 
research the following supervised and unsupervised learning algorithms are compared with the proposed algorithm. 
 

II. LITERATURE REVIEW 
Past Literature pertaining to Missing data imputation techniques to compute the missing value for the missing record or attribute 
and fill the estimated value from other reported values were surveyed. In review of literature Missing data imputation techniques 
are classified as ignorable missing data imputation and non-ignorable missing data imputation. In the literature many researchers 
have proposed missing data imputation techniques such as Cold-Deck Imputation, Imputation with K-Nearest Neighbor (KNNI), 
K-means Clustering Imputation (EM-GMM), Imputation with Fuzzy K-Means Clustering, imputation with Agglomerative 
Hierarchical clustering (AHC), Imputation with Mean-shift Clustering (MSC), Naïve Bayesian Imputation and Expectation – 
Maximization Clustering using Gaussian Mixture Models (EM-GMM) Algorithm.  

III. METHODOLOGY 
In this article Transmogrification of Imputation Algorithm for Clustering of Data is dealt with novel for missing data imputation, 
the transmogrified method uses mathematical approach and Index segmentation based Imputation Algorithm for missing data 
imputation. The databases were used to demonstrate the performance of the proposed method. The proposed algorithm is 
evaluated by extensive experiments and comparison with KNNI - Imputation with K-Nearest Neighbor, MSC- Imputation with 
Mean-shift Clustering, AHC- Agglomerative Hierarchical clustering, EM-GMM- Expectation – Maximization Clustering using 
Gaussian Mixture Models and Naïve Bayesian Model. An imputation strategy Transmogrified approach is described to compute 
the proximity measure in the feature missing space between the missing data to identify the nearest neighbor missing data from 
where the values are to be imputed., 
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IV. EVALUATION AND RESULTS 
In this section we present An Improved novel Index Measured segmentation based Imputation Algorithm for missing data In this 
section we present our study and the classification accuracies are presented in Table 1 describes a dataset and Table 2 describes a 
performance. An Improved novel Index Measured segmentation based Imputation 
Algorithm (with cross folds) is also compared with other algorithms (KNNI, MSC, AHC, EM-GMM, NBM and FEM-GMM) 
on the real valued datasets and categorical data sets. 

Table 1: Datasets Used For the Experiment 
Datasets Records Attributes 
IBM Log data set 56865 182 
Sonar data set 32578 45 

Table 1: Test accuracies of Transmogrified clusters and normal clusters 

Dataset KNNI MSC EM-
GMM 

AHC FEM-GMM NBM 

IBM Log 
data set – 
Transmogrifi
ed cluster 

60.64 64.90 66.78 70.45 74.54 78.40 

Sonar data 
set-  

80.96 81.37 84.28 87.89 90.52 93.85 

Finally Fig.1 shows that the real values datasets accuracy with A novel Index Measured segmentation based Imputation Algorithm 
(with cross folds). Thus we conclude that our algorithm is the best approach to imputing the missing values, as they led to the 
statistically significant improvements in prediction accuracy. Thus the present results might generalize to different types of data 
sets (nominal and/or numeric). 

 
Fig.1 Accuracy on real value datasets with INMSI-Algorithm 

V. CONCLUSION 
Missing values are very prominent in a real world database. In this article, Transmogrified Imputation Algorithm for Clustering of 
Data in Missing Data is described. It is an Improved novel Clustering Algorithm where Transmogrification of Data based 
Imputation Algorithm of missing values is discussed, that aims to improve in terms of accuracy. The test accuracies of 
Transmogrified clusters and Normal clusters were compared using two different data sets IBM Log file data set and Sonar data 
set, with the state-of- the art methodologies of real world imputation algorithms on categorical and real values of benchmark 
datasets. We conclude that the use of our Transmogrified Imputation Algorithm for Clustering of Data in Missing Data improved 
the accuracies of the predictions on real world missing data value problems. 
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Test accuracies of Transmogrified clusters and normal clusters 

IBM Log data set-
Transmogrified cluster

Sonar data set-
Transmogrified cluster

IBM Log data set-Normal
cluster

Sonar data set-Normal
cluster
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