

7 III March 2019

http://doi.org/10.22214/ijraset.2019.3401

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

 2176 ©IJRASET: All Rights are Reserved

Enhancing Software Security for Salesforce
Applications

Akshita D. Kadam1, Seema Joshi2

1Master of Computer Engineering (CyberSecurity), Graduate School of Engineering and Technology, GTU Campus
2Assistant Professor(Cyber Security), School of Engineering and Technology, GTU Campus

Abstract:All software projects have one artifact in common: Source code. Code review from security standpoint ranks very high
on the list of software security review best practices. Static Application Security Testing (SAST) should be implemented as a part
of modern development process. Developing and deploying secure software is a challenging task. The code review from security
standpoint is critical part in software security. The main aim is to benefit the Salesforce applications security review process for
better performance and efficient findings for Cyber security practices. This approach will be modularized one that can facilitate
developer to test Apex code against set of modules or classes or project as a whole as per the developer's concern and
requirements. It will assist as developer's guide leveraging developer to implement secure coding practices without having prior
paid automated scans for code review. Applications that intensify accuracy for better secure code analysis and reducing number
of false positives. This approach will help salesforce application developer to pin point exact security issues during the
development phase and help them to build secure salesforce application.
Keywords:Access Control, Accuracy, Apex code , Code review,Cyber security, False positives, , Intensify,Modularized,Salesforce,
Salesforce application, Static code analysis, Source code, Source code analysis, Vulnerability.

I. INTRODUCTION
Salesforce is Cloud Service Provider which provides “Salesforce” as Platform as a Service to the customer where customer can
deploy their customapplication on the Salesforce platform by writing application in the Apex Language along with Lightning/Visual
force components using html/css and javascripts.You would need Salesforce login to compile and run the program written in Apex
language, since it can only run on Salesforce platform which is on Cloud. If you compare web interface of typical web application
Vs Salesforce application, both looks similar and vulnerabilities are similar (names are different but nature is same) but the
methodology of detection vulnerability is different in both the application. From Static code analysis perspective, since both the
languages are different, the methodology of detection is completely different. As per OWASP (The Open Web Application Security
Project) Top 10 Vulnerabilities- “Broken Access Control” is one of the highly emerged vulnerability that needs to be checked and
enforced in recent years
As per OWASP general term it is known as “Broken Access Control”, when we map this vulnerability for Salesforce platform the
same term is referred to as is “CRUD/FLS and Sharing Violation”. As OWASP is the general consortium for variety of Web
Application and therefore cannot be termed individually for different platforms. OWASP provides general terms for each type of
category that is presented as in Web Application Context that we need to map as per our framework and platform schema. Below
figure explains the mapping between OWASP and salesforce.

Fig. 1 Mapping of OWASP Vulnerability with Salesforce

Broken Access Control is general term that in terms of Salesforce can be mapped as CRUD (Create Read Update Delete)/FLS (Field
Level Security, i.e. Sharing policy). CRUD/FLS and Sharing Implementation requires flaw pattern or logic for Enforcement that
does not exist for any other API or Platform other than Apex

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

 2177 ©IJRASET: All Rights are Reserved

II. EXPERIMENTAL SETUP
This set-up is created in order to give a clear idea about how CRUD/FLS vulnerability arises in Salesforce Application and how it is
mitigated:
Prerequisite:Salesforce Admin Account, Normal User Account, Internet.

A. Setup
1) As an admin I am creating “test” permission set for CRUD/FLS check which is the duty of Salesforce Adminto assign

privileges to configure ACL(access control list) as per the schema of the individual application

Fig. 2.1 Creating permission set: test

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

 2178 ©IJRASET: All Rights are Reserved

2) Then as an admin I am enforcing “no access” permission rights, i.e., no read write update delete can be performed on Employee
object

Fig. 2.2 Assigning test permission set access rights to Work.com Only (Normal user) profiles

Then “test” permission set created as an Admin is assigned to Work.com Only User Category of users which means that Work.com
Only User cannot have any access on object Employee.“Work.com OnlyUser” is one of profiles in Salesforce application that is
manually selected for demonstration purpose and same experiment will give similar results if performed with other user profiles.
3) So, as per the privilege configuration assigned by an Admin to normal users that come under “Work.com Only User”profile

should not be able to perform Create, Read, Update, or Delete operation on Employee object
4) Now we will perform a test case to verify that configuration assigned by Admin on Work.com User profiles works in case of

Custom Salesforce Applications

B. Testing for CRUD/FLS
For testing application we created a demonstration test code which allows normal existing Work.com Only User to create
otherWork.com User’s Employee record and save it directly into the database server which is against Admin configuration privacy
policy which bypasses write access denied bythe Salesforce Admin for salesforce domain. Another method was created which on
reloading the application calls constructor that allows Work.com Only User to read records of other Employees which should not be
displayed as user was assigned denied permission to read access on other user’s employee records in test permission set..This test
code was purely created to bypass access control privileges which should not bypassed as Admin had already configured permission
for it and also to check how Apex code execution works by verifying whether permissions assigned by Admin are bypassed or
respected.
On performing the testing process on application that was assigned no access permission set on Employee object following results
were found: Though no access rights was assigned on “Employee” object there exists vulnerability in Salesforce application that
“Work.com Only User” can still have access to Employee object type as Apex code runs in System context by default. Thus CIA
triad (Confidentiality, Integrity and Availability) is breached.
This vulnerability exists in Apex because the code built runs in System’s Context (Current User’s authorization is ignored) rather
than User’s Context (Current User’s authorizationis respected)

Fig. 2.3 Work.com User able to bypass write access denied by Admin

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

 2179 ©IJRASET: All Rights are Reserved

Fig. 2.4 Work.com User able to bypass read access denied by Admin

C. CRUD/FLS Enforcement
To overcome this vulnerability that exists in Salesforce Application, there is secure coding practices that need to be enforced and
ensured:
For CRUD/FLS Enforcement
1) On Create / Upsert: isCreateable,
2) Upsert: isCreateable and isUpdateable,
3) Read: isAccesible,
4) Update : isUpdateable,
5) Delete: isDeletable
6) class should be declared with “with sharing” in order to have field level access enforced on particular record
We have demonstrated how to enforce Create and Read access check, other CRUD/FLS enforcement are done in similar manner.

Fig. 2.5 Mitigation for CRUD writesaccess vulnerability

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

 2180 ©IJRASET: All Rights are Reserved

Fig. 2.6 Mitigation for CRUD read access vulnerability

D. After CRUD/FLS Enforcement
Current logged-in User (Work.com Only User) is not able to insert/ read another Employee records because he/she do not have
privilege access rights for the same. Thus through CRUD/FLS enforcement privileges are not escalated and access control rights are
maintained. Basically, in the typical web application, “broken access control” is checked by validating user session and user role at
various levels such as business layer, repository layer, data access layer, etc. And in the Salesforce, it is to be checked in the Apex
class during various CRUD operation APIs like insert, update, delete, upsert and selectperformed on Salesforce database server.

Fig. 2.7 CRUD Enforcement on write access

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

 2181 ©IJRASET: All Rights are Reserved

Fig. 2.8 CRUD Enforcement on read access

III. EXISTING SYSTEM
There are basically 2 types of secure code review techniques performed
1) Source code : where code is neither compiled nor executed
2) Binary Code : performs on converted byte code after compiling the code
For our research purpose we will be focussing on source code review technique where the code is static and never executed before
testing and is simplyanalysed on its original code itself.

Automated SAST Technique
The ongoing Automated Static Application Security Tool makes use of an automated scanner that only concentrates on the keyword
matching and does have support for advance techniques which are required in real-time case where code will be customised code
that have customized method to performCRUD/FLS permission checks as per the business requirement. The following flowchart
showcase on which parameters existing vulnerability testing tool works and in later topic we will discuss what are added parameters
of our proposed model which makes it more efficient mechanism that provides sufficient logical parameters for accurate verification
of whether source code vulnerability arises and exists till the final call from source to sink.

Fig. 3 Workflow of Existing Method of Salesforce CRUD/FLS Vulnerability Testing

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

 2182 ©IJRASET: All Rights are Reserved

IV. PROPOSED SYSTEM
The main idea behind the making of toolis:

A. Apex is on-demand language but the security perspective of coding still relies mostly on developers who is not yet practitioner
that practices secure coding practices

B. Code review mechanism should be able to generate accurate results instead of more number of false positives which indirectly
indicate more number of false negatives

C. A Source code review may prove efficient for one set of applications but at the same time cannot that useful for another set
which simply means it depends on logic of patterns created that should accurately verify whether vulnerability can arise or not
based on forward and backtracking to find out background of code snippet to be tested

D. SAST tool should be able to interpret the vulnerability such that non security person can easily implement and apply changes to
the code

To fill the gap hybrid approach is used in which semi-automate scanner is used with different functionalities which requires
combine effort of tool and the auditor. The main aim to have this approach is to: Reduce high number of false positive generated by
automated scanners and to have efficient mechanism for secure code review practices
In this approach the step to be followed is explained in the following table:

TABLE I
STEPS FOR HYBRID APPROACH TECHNIQUE

1. Open the tool and insert the packages(modules) that we want to scan

2. Select the pattern file for which you want to trace instance for

3. Click on run button to execute the scan

4. Auditor will now verify one by one instance by hybrid approach

5. There are different functionality to enhance the scan
 a. Trace : trace the keyword name (class/method/variable) in All files (you
can also check based on specific folder or current file itself)
 b. HighlightAll : Forward trace and Back trace to find out object type of
the associated instance that performs DML operation and maps it to see if the
instance’s object has called for permission checks on the object

6. Auditor will back trace the instance in order to find out whether the instance
detected by tool is already CRUD/FLS enforced.
If Yes: Code review practice is already followed and there is no need to trace
further.
If No : Check if the instance is called in final page
 If Yes : FINDING
 If No : Check another class/method that traces the instance into the
final page
 Yes : FINDING else NO FINDING

7. For Sharing if class is declared without “sharing” keyword check if any DML
operation performed. Check is similar to Step 6 for CRUD/FLS such that if the
instance of the class that is declared without “sharing” is called in final page if
Yes : FINDING else NO FINDING

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

 2183 ©IJRASET: All Rights are Reserved

Based on the above working functionalities workflow of the proposed system is explained below

Fig. 4 Designed Proposed System Salesforce CRUD/FLS Vulnerability Testing

V. COMPARATIVE ANALYSIS
TABLE II

COMPARISION OF WORKINGS OF SAST AUTOMATED TOOL VS PROPOSED HYBRID APPROACH

SAST AUTOMATED SCANNER PROPOSED SYSTEM

Cost is very high and paid in case if you want to scan your
Apps

Free of Cost

Bound to perform limited number of scans as per your
subscriptions and plans

Performs #m number of scans for #n Applications (# where m
and n are finite integers)

Less accurate findings so is high number of false positives More accurate findings of vulnerabilities so performance is
high

It is purely based on native methods that check CRUD/FLS
and Sharing Violation

Complex algorithm like Regex pattern match, backtracking
and Forward tracking algorithm is applied

More time and effort required as Manual review is needed
even after performing fully-automated scans

Lesser time is required as human auditor can recognize easily
and trace custom methods used to perform CRUD/FLS
custom checks

No interaction involved with auditor to verify in between the
scans

Hybrid approach is followed involving mutual effort of
auditor along with semi-automated algorithm
patternsensuring whether the instance actually generates a
loophole for vulnerability

It can only scan an entire project It can scan class, (customized)modules as well as entire
project

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

 2184 ©IJRASET: All Rights are Reserved

VI. HYPOTHSES
A dataset of 100 custom Salesforce Applications that were tested using SAST Automated Scanner as well as Proposed Hybrid
Approachin order to draw line of conclusion about how much efficiency and performance is provided by individual approach. After
successful testing of 100 customized salesforceapplicationsusing both approaches that were to be sent for Secure Code Review
Process following results were drawn after comparing the result set of each approach individually for same applications:

TABLE III

COMPARISON TABLE OF FALSE POSITIVE REDUCTION RATIO

Category SAST Automated Scanner Proposed System

False Positive Ratio 77% Accurate results are generated as tool
follows automated scanning without having
deep analyses on code and hence generate
more number of false positives than our
proposed system. Automated scans provides
2/3 of static code vulnerability removal rate

 95% Accurate results are generated as it
follows semi-automated (hybrid) approach.
Negligible number of false positives ratio.
Thus generates accurate static code
vulnerability removal rate enhancing software
security by 22% of false positive reduction
ratiocompared to Automated SAST Scanner

Fig. 6.1 Bar graph differentiating false positive ratio generated by Existing System Vs Proposed Hybrid System

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

 Volume 7 Issue III, Mar 2019- Available at www.ijraset.com

 2185 ©IJRASET: All Rights are Reserved

Fig. 6.2 Line graph demonstrating reduction in false positive ratio generated by Existing System by Proposed Hybrid System

VII. CONCLUSION
Detection methodology should be adopted such that it reduce the false positive ratio as a software team already using code reviews
can gain a reasonable increase of 10% in defect removal, say moving from 85% to 95% , results in double the cost savings
($240,000 versus $120,000). The biggest is the cost multiplier of fixing bugs and security defects after a product is released
(conservatively set at 5:1) [8]
Too High a percentage of false positive leads to Number of false negatives [5].Reducing false positives are directly proportional to
having reduce ratio of false negatives which enhances performance and provides least loopholes for vulnerabilities that arises from
source code. Flagging a finding as vulnerable in code should be reported using efficient logical mechanism such that accuracy and
performance are evaluated and information security is valued as per recent IBM study, the average cost for a stolen record raised 9%
to $145 in 2014[11]

VIII. ACKNOWLEDGEMENT
I would like to thank my external guide Mr. Amish Shah for providing me enough knowledge for creating the experimental setup
and guiding me throughout the research work. I would like to thank my organization for providing me datasets of real-time
salesforce Applications which has been played a major role for analysis in my research work.

REFERENCES
[1] OWASP. “The Ten Most Critical Web Application Security Risks,” [Online], Available:https://www.owasp.org/index.php/Top_10-2017_Top_10 ,Accessed

on: 3 August 2018.
[2] Gearset, Static code analysis for Apex, [Online], Available:https://gearset.com/assets/Static-code-analysis-for-apex.pdf, Accessed on: 5 August 2018.
[3] Checkmarx, Apex Vulnerabilities & How to Develop Securely on Force.com, [Online], Available:https://www.checkmarx.com/resources/white-

papers/page/2/ , Accessed on: 5 August 2018.
[4] A. Saxena, S. Sengupta, P. Duraisamy, V. Kaulgud, and A. Chakraborty, “Detecting SOQL-injection vulnerabilities in SalesForce applications,”Proceedings

of the 2013 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2013, pp. 489–493, 2013.
[5] B. Chess and G. Mcgraw, “Static analysis for security,” IEEE Security and Privacy, vol. 2, no. 6, pp. 76–79, 2004.
[6] D. Singh, V. R. Sekar, K. T. Stolee, and B. Johnson, “Evaluating how static analysis tools can reduce code review effort,” Proceedings of IEEE Symposium on

Visual Languages and Human-Centric Computing, VL/HCC, vol. 2017–October, pp. 101–105, 2017.
[7] B. Maty and S. Checkmarx, “True Source Code Analysis VS Binary \ Byte Code Analysis,” vol. 1, no. 800, pp. 1–9.
[8] GrammaTech, Enhancing Code Reviews with Static Analysis [Online], Available: http://blogs.grammatech.com/enhancing-code-reviews-with-static-analysis,

Accessed on: 9 September 2018.
[9] Salesforce Secure Coding Guide [Online],

Available: https://developer.salesforce.com/docs/atlas.en-us.secure_coding_guide.meta/secure_coding_guide/secure_coding_guidelines.htm,
Accessed on: 9 January 2019.

[10] Z. Zhioua, S. Short, and Y. Roudier, “Static code analysis for software security verification: Problems and approaches,”Proceedings - IEEE 38th Annual
International Computers, Software and Applications Conference Workshops, COMPSACW 2014, pp. 102–109, 2014.

[11] T. Thomas, “Exploring the usability and effectiveness of interactive annotation and code review for the detection of security vulnerabilities,” Proceedings
IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, vol. 2015–Decem, pp. 295–296, 2015.

