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Abstract: To perceive provably optimal solutions in many applications of heuristic search insufficient time is available. We contemplate the 
contract search problem: finding the best solution possible within a given time limit using an interruptible anytime algorithm. Such 
algorithms return a sequence of improving solutions until interrupted and do not consider the approaching deadline during the course of 
the search. We propose a new approach,Deadline Aware Search that explicitly takes the deadline into account and attempts to use all 
available time to find a single high-quality solution. 
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I.  INTRODUCTION

Heuristic search is an oft employed technique for automated 
problem solving. Given an admissible and consistent heuristic, 
A* search (Hart, Nilsson, and Raphael (1968))[4] finds an 
optimal solution using the smallest possible number of 
expansions, up to tie-breaking, of any similarly informed 
algorithm(Dechter and Pearl (1988))[3]. Unfortunately for many 
problems of practical interest finding an optimal solutionstill 
requires an impractical amount of time. In this paper, we address 
one attractive approach to this dilemma, contract search, in 
which the objective is to find the cheapest solution possible 
within a given deadline. there are two real time contract search 
algorithms & neither performs particularly well in the following 
evaluation. This may be why the prevailing approach to solving 
such search problems is to use an interruptible anytime algorithm. 
While anytime algorithms are applicable to the problem of 
contract search, they are designed for use in problems where the 
deadline is unknown. The deadline has no impact on the search 
order of these algorithms,save for what node will be the last to be 
expanded. We propose that knowledge of the time remaining 

in the search can be used to alter the search order productively 

by allocating all search effort towards optimizing a single 
solution, rather than discarding all but the last one found. In this 
paper we propose a new algorithm called Deadline Aware Search 

(DAS) that is based directly on the objective of contract search:
finding the best single solution possible within the deadline. At 
each iteration the search expands the state that appears to lead to 
the best solution deemed reachable within the time remaining. 
Our empirical analysis shows that DAS can compete with and 
often surpasses previous contract approaches and the leading 
anytime algorithms on variants of gridworld navigation, the 
sliding tiles puzzle, and dynamic robot navigation without 
relying on off-line learning or parameter optimization as previous 
proposals do.

II. PREVIOUS WORK

We will first review the anytime approach to search under 
adeadline. We then the two previous proposals for 
contractalgorithms before presenting Deadline Aware Search, a 
newapproach to the problem of contract search.

1) Anytime Algorithms:Interruptible anytime algorithms are a class 
of algorithmsthat are designed to quickly return a highly 
suboptimal solutionfollowed by a sequence of solutions of 
improving quality,eventually converging on optimal. These 
algorithms areoften applied to the problem of search under a 
deadline becausethey can be configured to find the first solution 
veryquickly, guaranteeing that some solution will be present 
atthe deadline, and as the deadline is extended the cost of 
thesolutions returned decreases, eventually to optimal.Anytime 
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Repairing A* (ARA*) performs weightedA* (Pohl 1973)[8]
search to find a starting incumbent solutionand then continues 
searching to find a sequence of improvedsolutions, eventually 
converging to the optimal. After eachnew solution is found the 
weight used in the search is reducedby some predefined amount, 
the open list is resorted,& search continues. Problem with the 
current anytime approaches isthat the best performing algorithms 
are based on boundedsuboptimal search, which requires that the 
bound be set priorto execution. While in some domains there is a 
single initialbound that performs well over the range of deadlines, 
thereare others in which one setting will perform better for 
shorterdeadlines and another for longer. There is currently no 
clearway to select a bound based on anything other than 
trainingon similar problems and deadlines, or intuition.

2) Time Constrained Search:Hiraishi, Ohwada, and Mizoguchi 
(1998)[5] proposed TimeConstrained Search, a contract 
algorithm based on weightedA*. It attempts to measure search 
behavior in order to adjustthe weight used in weighted A* in 
order meet the deadlinewhile optimizing solution quality. They 
perform a standardweighted A* search on f0(s) = g(s)+w · h(s), 
where g(s)represents the cost of the path explored thus far, h(s) 
is theheuristic estimate of cost-to-go, and w is a weight factor 
thatthey adjust dynamically. They take advantage of the fact 
thatincreasing the weight w generally has the effect of 
biasingsearch effort towards states that are closer to goals, 
reducingsolving time. Search behavior is adjusted using search 
velocity. While their empirical analysis illustrates the qualityof 
solutions found over a range of real-time deadlines (withthe 
contract specified in seconds of computation time), 
nocomparisons were made to previously proposed algorithms.
Despite our best efforts to implement and optimize this 
algorithmwe were unable to create a real-time version that 
wascomparable to existing approaches.

3) Contract Search:Contract Search (Aine, Chakrabarti, and 
Kumar 2010)[1] attemptsto meet the specified deadline by 
limiting the numberof state expansions that can be performed at 
each depth inthe search tree. The algorithm is based around the 
followinginsight into search on trees: for an algorithm to expand 
theoptimal goal, it need only expand a single state along an 
optimalpath at each depth. The idea behind Contract Search isto 
expand only as many states as needed at each depth in orderto 
encounter the optimal solution. We can obviously notknow this 
information a priori. We can, however, assumethat the more 

states we expand at a given depth, the morelikely we are to have 
expanded the state on the optimal path.Contract search attempts 
to maximize the likelihood that anoptimal solution is found 
within the deadline by maximizingthe likelihood that this 
optimal state is expanded at eachdepth, subject to an expansion 
budget.

Deadline Aware Search(starting state, deadline)
1. open {starting state}
2. pruned {}
3. incumbent NULL
4. while (time) <(deadline)
5. if open is non-empty
6. dmax calculate d bound()
7. s remove state from open with minimal f(s)
8. if s is a goal and is better than incumbent
9. incumbent s
10. else if b d(s) < dmax
11. for each child s0 of state s
12. add s0 to open
13. else
14. add s to pruned
15. else (* open is empty *)
16. recover pruned states(open, pruned)
17. return incumbent

Recover Pruned States(open, pruned)
18. exp estimated expansions remaining
19. while exp >0 and pruned is non-empty loop
20. s remove state from pruned with minimal f(s)
21. add s to open
23. exp = exp −b d(s)

Figure 1: Pseudo-code sketch of Deadline Aware Search

The largest contract considered by (Aine, Chakrabarti,and 
Kumar 2010)[1] is 50,000 expansions. In our evaluation,we will 
be considering search deadlines of up to a minute,which for our 
benchmark domains could mean more thanfive million states. 
This is problematic because the time andspace complexity of 
computing these values grows quadraticallyin the size of the 
contract. Aine (2011)[2] suggested approximatingthe table by 
only considering states in chunks,rather than a single state at a 
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time. This cuts down on thesize of the table and the number of
computations we needto perform to compute it. In the results 
presented below, theresolution was selected so that the tables 
needed could becomputed within 8 GB of memory. Computing 
the tablestypically took less than eight hours per domain, 
although anew table must be computed for each considered 
deadline.

III. PROPOSED WORK

Deadline Aware Search
We now present a new approach for the contract search 
problem,the called Deadline Aware Search (DAS). Unlike 
anytimesearch algorithms that do not alter their search strategyin 
reaction to the approaching deadline, DAS reacts tothe 
approaching deadline during search. We begin by presentinga 
general overview of the algorithm and its behavior.We then 
discuss the estimation of two quantities neededby the algorithm: 
the maximum achievable search depthdmax and distance to the 
cheapest solution beneath a nodeˆdcheapest(s). Finally, we 
discuss DAS’s technique for recoveringfrom situations in which 
it estimates that no goal isreachable given the current search 
behavior.DAS is a simple approach, derived directly from the 
objectiveof contract search. It expands, among all the 
statesleading to solutions deemed reachable within the time 
remaining,the one with the minimum f(s) value. Pseudocodeof 
the algorithm is presented in Figure 1. The open listis first 
initialized with the starting state and then the searchproceeds to 
expand nodes from the open list until either thesearch time 
expires or the open list is empty (indicating thatthere is no 
solution deemed reachable). At each iterationof the algorithm, 
the state with minimal f(s) is selectedfor expansion and the 
current maximum reachable distance,dmax, is calculated. If the 
distance to this state’s best goaldcheapest(s) is less than dmax, it is 
expanded and its childrenare added to the open list. Otherwise, it 
is added tothe pruned list and the search will select the next best 
nodefor expansion. 

A. Calculating dmax
One could argue that all remaining search effort should beput 
towards finding the best possible solution under the single state 
in the search space estimated to be best and thereforethe dmax 
value used to prune states should be equalto the estimated 
number of expansions possible in the timeremaining. In practice, 
however, this approach renders thevalue of dmax meaningless for 

most of the search in whichthe number of expansions will often 
be far larger than theestimated length of the path to any 
particular solution. If thenumber of expansions allowed were 
close to the length of thepath to a solution then one could hardly 
consider performingany type of search other than depth-first! 
Pilot empiricalstudies have confirmed that such an interpretation 
of dmaxproduces unreasonable behavior.To understand the true 
number of expansions it will taketo find a solution under a 
particular state, one must considerthe behavior of the search 
itself. In a best-first search, it isnot typical that a single path will 
be followed from the startingstate to the optimal solution. Often, 
due to error in theheuristic, when a state is expanded the f value 
of its bestchild state sbc is greater than f(s). When this occurs it 
ispossible that there exists some other state in the open lists0 

such that f(s0) < f(sbc). If the search continues unhindered,it 
will stop exploring the path leading to sbc and startexamining the 
path currently leading to s0. This behavior is aphenomenon that 
we call search vacillation, where multiplepartial solutions are 
being explored during the search.One way to measure this 
vacillation, is a concept we callexpansion delay. During the 
search, the number of expansionsperformed is tracked, ecurr. 
expansions. 
B. Pruning On ˆd (s)
DAS makes use of a heuristic ˆdcheapest(s) that estimates 
thelength of the path to the cheapest goal state under a 
particularstate s. For unit-cost domains this heuristic is the 
sameas the standard cost-to-go h(s). For non-unit cost domains 
itcan often be constructed similarly to h(s) by estimating 
thesame cheapest path while replacing all actions costs with 
1.We do not require that dcheapest(s) be admissible or 
evenconsistent, in fact, it is preferable for dcheapest(s) to act as 
adifferentiator between different paths by more accurately 
accountingfor heuristic error. We employ the path-based 
correctionmodel of Thayer, Dionne, and Ruml (2011) to 
calculatea corrected heuristic ˆdcheapest(s). Briefly, this 
correctionmodel uses error experienced at each expansion:_d 
=dcheapest(s) −dcheapest(p(s)) + 1, where p(s) representsthe 
parent of state s. The mean single step error encounteredso far ¯ 
_d(s) is tracked for each partial solution and isused as an 
estimator of the average single step error remainingfrom the end 
of that partial solution to the correspondinggoal state. 

C. Search Recovery
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It can be the case that the effects of pruning are not enoughto 
keep the ˆd(s) of at least one state in the open list below 
thevalue of dmax. In these cases, DAS will prune all states 
fromthe open list as “unreachable”. This is an indication that 
despitethe best efforts of the algorithm, the amount of 
vacillationremaining in the search due to competing states on 
theopen list will result in no further solutions being reached.To 
recover from this, we first estimate the number of 
expansionspossible in the time remaining exp. States are 
thenselected from the pruned list in order of minimal f(s) 
valuesuch that the sum of ˆd(s) for all states inserted is 
approximatelyequal to exp. In order to guarantee that at leastone 
state is placed back into open at each recovery we insertstates 
into open until the sum of ˆd(s) first exceeds exp .The intention 
is that only the best set of statesthat would be reachable 
regardless of the search behaviorare kept. Because the open list 
has changed so drastically,the previous estimation of average 
expansion delay _e is nolonger relevant and the running average 
is reset. This allowsthe search to continue and measure the new 
local behaviorafter the recovery. The same settling time used at 
the start ofthe search must be applied, during which dmax is not 
calculatedor used.

IV. CONCLUSION

We have proposed a new method of measuring Search 
behavior,expansion delay, that can be used as an indicator of the 
level of vacillation present in the search due to heuristic error 
leading to competition between different paths on the open list. 
Using this measure we have constructed a very simple and 
general approach to the problem of heuristic search under 
deadlines: Deadline Aware Search. DAS appears to be the first 
effective contract heuristic search algorithm, showing 
improvements over ARA* and RWA* in several domains using 
real time as deadlines. Our approach also has the benefit of being 
parameterless, learning necessary information on-line, while 
previous approaches required either parameter optimization or 
off-line training and pre-computation. The problem of heuristic 
search under real-time deadlines is of great importance in 
practice and yet few algorithms have been proposed for that 
setting. While anytime methods are certainly applicable, they are 
really designed to address the problem of search when the 
deadline unknown. While simple, our approach illustrates that 
knowledge of the termination deadline can improve performance 
for contract search.
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