

2 III March 2014

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 15

Cognizant Accession Subservient to Deadline by
Dint of Deadline Aware Search

Shivani Chaudhary
Department of Computer Science

DCRUST, Murthal, Haryana (INDIA)

Abstract: To perceive provably optimal solutions in many applications of heuristic search insufficient time is available. We contemplate the
contract search problem: finding the best solution possible within a given time limit using an interruptible anytime algorithm. Such
algorithms return a sequence of improving solutions until interrupted and do not consider the approaching deadline during the course of
the search. We propose a new approach,Deadline Aware Search that explicitly takes the deadline into account and attempts to use all
available time to find a single high-quality solution.

Keywords: Contract search, deadline aware search, heuristic search, best first search.

I. INTRODUCTION

Heuristic search is an oft employed technique for automated
problem solving. Given an admissible and consistent heuristic,
A* search (Hart, Nilsson, and Raphael (1968))[4] finds an
optimal solution using the smallest possible number of
expansions, up to tie-breaking, of any similarly informed
algorithm(Dechter and Pearl (1988))[3]. Unfortunately for many
problems of practical interest finding an optimal solutionstill
requires an impractical amount of time. In this paper, we address
one attractive approach to this dilemma, contract search, in
which the objective is to find the cheapest solution possible
within a given deadline. there are two real time contract search
algorithms & neither performs particularly well in the following
evaluation. This may be why the prevailing approach to solving
such search problems is to use an interruptible anytime algorithm.
While anytime algorithms are applicable to the problem of
contract search, they are designed for use in problems where the
deadline is unknown. The deadline has no impact on the search
order of these algorithms,save for what node will be the last to be
expanded. We propose that knowledge of the time remaining

in the search can be used to alter the search order productively

by allocating all search effort towards optimizing a single
solution, rather than discarding all but the last one found. In this
paper we propose a new algorithm called Deadline Aware Search

(DAS) that is based directly on the objective of contract search:
finding the best single solution possible within the deadline. At
each iteration the search expands the state that appears to lead to
the best solution deemed reachable within the time remaining.
Our empirical analysis shows that DAS can compete with and
often surpasses previous contract approaches and the leading
anytime algorithms on variants of gridworld navigation, the
sliding tiles puzzle, and dynamic robot navigation without
relying on off-line learning or parameter optimization as previous
proposals do.

II. PREVIOUS WORK

We will first review the anytime approach to search under
adeadline. We then the two previous proposals for
contractalgorithms before presenting Deadline Aware Search, a
newapproach to the problem of contract search.

1) Anytime Algorithms:Interruptible anytime algorithms are a class
of algorithmsthat are designed to quickly return a highly
suboptimal solutionfollowed by a sequence of solutions of
improving quality,eventually converging on optimal. These
algorithms areoften applied to the problem of search under a
deadline becausethey can be configured to find the first solution
veryquickly, guaranteeing that some solution will be present
atthe deadline, and as the deadline is extended the cost of
thesolutions returned decreases, eventually to optimal.Anytime

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 16

Repairing A* (ARA*) performs weightedA* (Pohl 1973)[8]
search to find a starting incumbent solutionand then continues
searching to find a sequence of improvedsolutions, eventually
converging to the optimal. After eachnew solution is found the
weight used in the search is reducedby some predefined amount,
the open list is resorted,& search continues. Problem with the
current anytime approaches isthat the best performing algorithms
are based on boundedsuboptimal search, which requires that the
bound be set priorto execution. While in some domains there is a
single initialbound that performs well over the range of deadlines,
thereare others in which one setting will perform better for
shorterdeadlines and another for longer. There is currently no
clearway to select a bound based on anything other than
trainingon similar problems and deadlines, or intuition.

2) Time Constrained Search:Hiraishi, Ohwada, and Mizoguchi
(1998)[5] proposed TimeConstrained Search, a contract
algorithm based on weightedA*. It attempts to measure search
behavior in order to adjustthe weight used in weighted A* in
order meet the deadlinewhile optimizing solution quality. They
perform a standardweighted A* search on f0(s) = g(s)+w · h(s),
where g(s)represents the cost of the path explored thus far, h(s)
is theheuristic estimate of cost-to-go, and w is a weight factor
thatthey adjust dynamically. They take advantage of the fact
thatincreasing the weight w generally has the effect of
biasingsearch effort towards states that are closer to goals,
reducingsolving time. Search behavior is adjusted using search
velocity. While their empirical analysis illustrates the qualityof
solutions found over a range of real-time deadlines (withthe
contract specified in seconds of computation time),
nocomparisons were made to previously proposed algorithms.
Despite our best efforts to implement and optimize this
algorithmwe were unable to create a real-time version that
wascomparable to existing approaches.

3) Contract Search:Contract Search (Aine, Chakrabarti, and
Kumar 2010)[1] attemptsto meet the specified deadline by
limiting the numberof state expansions that can be performed at
each depth inthe search tree. The algorithm is based around the
followinginsight into search on trees: for an algorithm to expand
theoptimal goal, it need only expand a single state along an
optimalpath at each depth. The idea behind Contract Search isto
expand only as many states as needed at each depth in orderto
encounter the optimal solution. We can obviously notknow this
information a priori. We can, however, assumethat the more

states we expand at a given depth, the morelikely we are to have
expanded the state on the optimal path.Contract search attempts
to maximize the likelihood that anoptimal solution is found
within the deadline by maximizingthe likelihood that this
optimal state is expanded at eachdepth, subject to an expansion
budget.

Deadline Aware Search(starting state, deadline)
1. open {starting state}
2. pruned {}
3. incumbent NULL
4. while (time) <(deadline)
5. if open is non-empty
6. dmax calculate d bound()
7. s remove state from open with minimal f(s)
8. if s is a goal and is better than incumbent
9. incumbent s
10. else if b d(s) < dmax
11. for each child s0 of state s
12. add s0 to open
13. else
14. add s to pruned
15. else (* open is empty *)
16. recover pruned states(open, pruned)
17. return incumbent

Recover Pruned States(open, pruned)
18. exp estimated expansions remaining
19. while exp >0 and pruned is non-empty loop
20. s remove state from pruned with minimal f(s)
21. add s to open
23. exp = exp −b d(s)

Figure 1: Pseudo-code sketch of Deadline Aware Search

The largest contract considered by (Aine, Chakrabarti,and
Kumar 2010)[1] is 50,000 expansions. In our evaluation,we will
be considering search deadlines of up to a minute,which for our
benchmark domains could mean more thanfive million states.
This is problematic because the time andspace complexity of
computing these values grows quadraticallyin the size of the
contract. Aine (2011)[2] suggested approximatingthe table by
only considering states in chunks,rather than a single state at a

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 17

time. This cuts down on thesize of the table and the number of
computations we needto perform to compute it. In the results
presented below, theresolution was selected so that the tables
needed could becomputed within 8 GB of memory. Computing
the tablestypically took less than eight hours per domain,
although anew table must be computed for each considered
deadline.

III. PROPOSED WORK

Deadline Aware Search
We now present a new approach for the contract search
problem,the called Deadline Aware Search (DAS). Unlike
anytimesearch algorithms that do not alter their search strategyin
reaction to the approaching deadline, DAS reacts tothe
approaching deadline during search. We begin by presentinga
general overview of the algorithm and its behavior.We then
discuss the estimation of two quantities neededby the algorithm:
the maximum achievable search depthdmax and distance to the
cheapest solution beneath a nodeˆdcheapest(s). Finally, we
discuss DAS’s technique for recoveringfrom situations in which
it estimates that no goal isreachable given the current search
behavior.DAS is a simple approach, derived directly from the
objectiveof contract search. It expands, among all the
statesleading to solutions deemed reachable within the time
remaining,the one with the minimum f(s) value. Pseudocodeof
the algorithm is presented in Figure 1. The open listis first
initialized with the starting state and then the searchproceeds to
expand nodes from the open list until either thesearch time
expires or the open list is empty (indicating thatthere is no
solution deemed reachable). At each iterationof the algorithm,
the state with minimal f(s) is selectedfor expansion and the
current maximum reachable distance,dmax, is calculated. If the
distance to this state’s best goaldcheapest(s) is less than dmax, it is
expanded and its childrenare added to the open list. Otherwise, it
is added tothe pruned list and the search will select the next best
nodefor expansion.

A. Calculating dmax
One could argue that all remaining search effort should beput
towards finding the best possible solution under the single state
in the search space estimated to be best and thereforethe dmax
value used to prune states should be equalto the estimated
number of expansions possible in the timeremaining. In practice,
however, this approach renders thevalue of dmax meaningless for

most of the search in whichthe number of expansions will often
be far larger than theestimated length of the path to any
particular solution. If thenumber of expansions allowed were
close to the length of thepath to a solution then one could hardly
consider performingany type of search other than depth-first!
Pilot empiricalstudies have confirmed that such an interpretation
of dmaxproduces unreasonable behavior.To understand the true
number of expansions it will taketo find a solution under a
particular state, one must considerthe behavior of the search
itself. In a best-first search, it isnot typical that a single path will
be followed from the startingstate to the optimal solution. Often,
due to error in theheuristic, when a state is expanded the f value
of its bestchild state sbc is greater than f(s). When this occurs it
ispossible that there exists some other state in the open lists0

such that f(s0) < f(sbc). If the search continues unhindered,it
will stop exploring the path leading to sbc and startexamining the
path currently leading to s0. This behavior is aphenomenon that
we call search vacillation, where multiplepartial solutions are
being explored during the search.One way to measure this
vacillation, is a concept we callexpansion delay. During the
search, the number of expansionsperformed is tracked, ecurr.
expansions.
B. Pruning On ˆd (s)
DAS makes use of a heuristic ˆdcheapest(s) that estimates
thelength of the path to the cheapest goal state under a
particularstate s. For unit-cost domains this heuristic is the
sameas the standard cost-to-go h(s). For non-unit cost domains
itcan often be constructed similarly to h(s) by estimating
thesame cheapest path while replacing all actions costs with
1.We do not require that dcheapest(s) be admissible or
evenconsistent, in fact, it is preferable for dcheapest(s) to act as
adifferentiator between different paths by more accurately
accountingfor heuristic error. We employ the path-based
correctionmodel of Thayer, Dionne, and Ruml (2011) to
calculatea corrected heuristic ˆdcheapest(s). Briefly, this
correctionmodel uses error experienced at each expansion:_d
=dcheapest(s) −dcheapest(p(s)) + 1, where p(s) representsthe
parent of state s. The mean single step error encounteredso far ¯
_d(s) is tracked for each partial solution and isused as an
estimator of the average single step error remainingfrom the end
of that partial solution to the correspondinggoal state.

C. Search Recovery

www.ijraset.com Vol. 2 Issue III, March 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 18

It can be the case that the effects of pruning are not enoughto
keep the ˆd(s) of at least one state in the open list below
thevalue of dmax. In these cases, DAS will prune all states
fromthe open list as “unreachable”. This is an indication that
despitethe best efforts of the algorithm, the amount of
vacillationremaining in the search due to competing states on
theopen list will result in no further solutions being reached.To
recover from this, we first estimate the number of
expansionspossible in the time remaining exp. States are
thenselected from the pruned list in order of minimal f(s)
valuesuch that the sum of ˆd(s) for all states inserted is
approximatelyequal to exp. In order to guarantee that at leastone
state is placed back into open at each recovery we insertstates
into open until the sum of ˆd(s) first exceeds exp .The intention
is that only the best set of statesthat would be reachable
regardless of the search behaviorare kept. Because the open list
has changed so drastically,the previous estimation of average
expansion delay _e is nolonger relevant and the running average
is reset. This allowsthe search to continue and measure the new
local behaviorafter the recovery. The same settling time used at
the start ofthe search must be applied, during which dmax is not
calculatedor used.

IV. CONCLUSION

We have proposed a new method of measuring Search
behavior,expansion delay, that can be used as an indicator of the
level of vacillation present in the search due to heuristic error
leading to competition between different paths on the open list.
Using this measure we have constructed a very simple and
general approach to the problem of heuristic search under
deadlines: Deadline Aware Search. DAS appears to be the first
effective contract heuristic search algorithm, showing
improvements over ARA* and RWA* in several domains using
real time as deadlines. Our approach also has the benefit of being
parameterless, learning necessary information on-line, while
previous approaches required either parameter optimization or
off-line training and pre-computation. The problem of heuristic
search under real-time deadlines is of great importance in
practice and yet few algorithms have been proposed for that
setting. While anytime methods are certainly applicable, they are
really designed to address the problem of search when the
deadline unknown. While simple, our approach illustrates that
knowledge of the termination deadline can improve performance
for contract search.

ACKNOWLEDGEMENT

I gratefully acknowledge support fromthe CSI professors for their
responses against the doubts that congested the mind as a whole
& especially to Rakesh Chawla for his responses to our inquiries
about contract search & beam search.

REFERENCES

[1] Aine, S.; Chakrabarti, P.; and Kumar, R. 2010. Heuristic searchunder
contract. Computational Intelligence 26(4):386–419.

[2] Aine, S. 2011. Personal communication.

[3] Dechter, R., and Pearl, J. 1988. The optimality of A*. In Kanal,L.,
and Kumar, V., eds., Search in Artificial Intelligence.
Springer-Verlag. 166–199.

[4] Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis
forthe heuristic determination of minimum cost paths. IEEE
Transactionsof Systems Science and Cybernetics SSC-4(2):100–107.

[5] Hiraishi, H.; Ohwada, H.; and Mizoguchi, F. 1998.
Timeconstrainedheuristic search for practical route finding. In
PacificRim International Conferences on Artificial Intelligence.

[6] Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence42:189–211.

[7] Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*: AnytimeA*
with provable bounds on sub-optimality. In Proceedings of
theSeventeenth Annual Conference on Neural Information
PorcessingSystems (NIPS-03).

[8] Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristiccompetence, genuine dynamic weighting and computation
issuesin heuristic problem solving. In Proceedings of IJCAI-73,
12–17.

[9] Richter, S.; Thayer, J. T.; and Ruml, W. 2009. The joy of
forgetting:Faster anytime search via restarting. In Symposium
onCombinatorial Search.

[10] Ruml, W., and Do, M. B. 2007. Best-first utility-guided search.
InProceedings of IJCAI-07, 2378–2384.

[11] Thayer, J. T., and Ruml, W. 2010. Anytime heuristic
search:Frameworks and algorithms. In SoCS 2010.

[12] Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning
inadmissibleheuristics during search. In Proceedings of the
Twenty-FirstInternational Conference on Automated Planning and
Scheduling(ICAPS-11).

