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Abstract: The purpose of the problem is how do reduce and manage the I/O overhead of data updating process in erasure 
coding. Mapping the update operations with current updating process. We find the method to reduce and maintains I/O 
overhead designing a heuristic scheduling algorithm. Then the analysis verifies that modify UCODR can effectively reduce the 
I/O overhead of update operations when multiple blocks are updated. It is implement a efficient storage system to deploy a 
modify UCODR with different set of erasure codes.    As the results UCODR can reduce the time of update operation by 37 
percentage and the input throughput of storage system increased 67 percentage.  
Keyword: Erasure codes, data updates, disk array, Cloud computing, Disk I/O overhead. 
 

I. INTRODUCTION 
Erasure Coding is a one of the data protection method widely used in big data storage systems.Erasure coding break the data into 
small piece of fragment and encode the data fragment with redundant pieces which can be stored in different storage locations. The 
real goal of Erasure coding is data protection and Storage system. The data reliability of storage systems that gives guarantee and 
widely advocated by ERASURE codes [1]. (e.g., disk array, distributed storage systems and cloud storage) . 
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Fig.1 Erasure coding and data fractioned into disks 

A. I/O during data update:  
Disk I/O works on the input/output operations on a physical disk. When the processor needs to wait for the file to be read because 
you’re reading data from a file on a disk (the same goes for writing). This is the time required for a computer to process a data 
request and response the processor and then retrieve the required data from the correct device. Reducing the I/O overhead of the 
update operations is hence a critical concern towards applying erasure codes in online applications. The update approaches only 
consider Small data values and Update and optimize the each block data Independent manner.  

B. Latency Constraints: 
 It is the delay from input to a storage system to desired outcome; the term is understood the different in various process and latency 
issues also varied from one to another. The data recovery process, update requests generally work under a stringent latency 
constraint. As a result, the scheduling algorithm needs to construct update sequences within a time limit. We have to resort to a 
heuristic algorithm to quickly find a good update sequence that can effectively reduce the I/O overhead of update operations. 
System and latency is the combined delay between  input and the correct output. In a computer system, often used to mean any 
delay or waiting that increases working the perceived response time beyond what is desired. 
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C. Implement of Erasure Coding 
The method broken the some data and parity data add the different locations. 
 
 

                    Data + Parity 
 
 
  
 
 
 
 

Fig.2 diagram formation of parity block 

A simple example of parity calculation is as follows: 
1) x = 2 (data) 
2) y = 5 (data) 
3) x + y = 7 (parity) 
4) 2x + y = 9 (parity) 
Hence, if "x=2" is lost, it can be reconstructed using the remaining equations. Even if both data bits are lost: "x=2" and "y=5", both 
can be reconstructed. The  systems is designed of n disk. The disks are partition into k disks that hold user data so that..m=n-k disks 
and hold coding information. 
The encoding  contents of the k data disks are used to calculate the contents of the m coding disks. Their contents are decoded from 
the surviving disks, When up to m disks fail. Repeat  all disks are in failure mode is an erasure, Then it’s all content are not 
unreadable. 

k data disks             encoding    m coding blocks 

 
 
 
 
 
 

Decoding 
 
 
 
 
 
            

Fig.3 encoding and decoding of k disks and m disks. 

The simplest erasure codes assume that each disk  
Each one w-bit word. I label these words x0, …, xk−1, which are the data words stored on the data disks, and c0, …, ym−1 , which are 
the coding words stored on the coding disks. The coding words are 
 
defined as linear combinations of the data words 
଴ݕ = ݊(଴,଴)ݔ଴ + ⋯ . +݊(଴,௞ିଵ)ݔ௞ିଵ1ݕ = ݊(ଵ,଴)ݔ଴ + ⋯ . +݊(ଵ,௞ିଵ)ݔ௞ିଵ௬                          (1) 
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II. REED SOLOMON CODE 
Clever ways of representing data so that one can recover the original information even if it is corrupted. In reed Solomon code the 
data will recover using redundancy parts of corrupted. 
Reed Solomon codes are error correcting codes that have been used in applications through out the fields storage systems and digital 
information. The Parameter of Reed-Solomon codes n (block size), m (message size), p (symbol size in bits), we encode the 
message as a polynomial p(x), and then multiply with a code generator polynomial r(x).We construct code generator polynomial 
r(x) with n –k factors, each root being a consecutive element in the Galois field. 
(ݔ)ݎ = ݔ) − ݔ)(ߙ − (ଶߙ … . . ݔ) − ܽ௡ି௠) = ଴ݎ + ଵ௫ݎ +⋯ . ௡ି௠ିଵݔ௡ି௠ିଵݎ+ +  ௡ି௠                      (2α is a primitive element, anݔ
alternative way of specifying elements in a field as successive powers 0, α0, α1, α2... αN where N = 2p-1. 
Set the code parameters.  
p=Number of bits per symbol 
n=Codeword length  
m=Message length 
݌ = 3 
݊ = 2௠ − 1                                                   (3) 
݉ = 3 
Create two messages based on GF(8). 
message = gf([2 7 3; 4 0 6],m) 
message = GF(2ଷ) array. Primitive polynomial = ܦଷ+D+1 (11 decimal) 

Array elements =ቀ2 7 3
4 0 6ቁ 

Generate RS (7,3) code words. 
code = rsenc (message ,n, m) 
code = GF(2^3) array. Primitive polynomial = ܦଷ+D+1 (11 decimal) 
Array elements =  

 ቂ2 7 3 
4 0 6

 6 7 6  
 4 2 2  

6
0ቃ 

the message has been written in vector [ ଵܺ... ܺ௡] to a polynomial p(x) of degree < k such that:• 
(௜ߙ)௫݌ = ݅ ݐℎܽݐ ݏ݈݀݋௜ ℎݔ = 1 … . . ݇        (4) 
Can be done using Lagrange interpolation. Once polynomial is found, evaluate at other for other points αk+1 ... n Nice property that 
evaluating p at the first k points yields the original message symbols. 
Decoding: The received block is input to the decoder for processing, the decoder first verifies whether this block appears in the 
dictionary of valid code words. Errors must have occurred during transmission when it does not have anything. This part of the 
decoder processing is called error detection .for a decoder, The parameters must to reconstruct the  encoded block are available . If 
all the errors detected, the decoder attempts a reconstruction. This is called error correction. 
Syndromes calculation:  the received block, the received polynomial is reconstructed, represented as c(x). The received polynomial 
is the superposition of the correct code word c(x) and an error polynomial e(x): 
(ݔ)ݎ              = (ݔ)ܿ +  (5)                                 (ݔ)݁
Since c(x) is multiple of r(x) 

(ݔ)ܿ  =  (6)                                      (ݔ)ݎ(ݔ)݌
A. Goals 
Always on erasure coding, drive failure tolerance, low space overhead, high performance. 
The erasure codes enable that the corrupted data at some point in the drive storage process to reprocessed by using information that 
data will e stored in array. 
Parity blocks: means that is a technical process it checks the data has been lost or written over then its moved to one place in storage 
to another or it could be transmitted to another place. How it works, the process of parity block first checks the adds checksums into 
data that enable the target device to determine whether the data was received properly. 
Even parity, a value of one are counted. perhaps that number is odd with the number of bits, the parity bit value is  to make the total 
number of ones  an even number. All the number of bits with a value of one is even, the parity bit value is  zero, so that the total  of 
ones in the set include the all remains an even number. 
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odd parity:  the number of bits with a value  one is an even number, the parity bit value is set to  make the total number of ones in 
the set contains the parity bit  an odd number. the number of bits with a value  is odd, the parity bit value is  zero, so that the total 
number of ones in the set (contains the parity bit) remains an odd number. 
 

III. PROPOSED  WORK 
A. File Update Approach 
 Discuss, how the update requests execute in storage systems. we should show how the update requests are mapped into storage 
systems, and then define two approaches to update parity blocks RCW and RMW are two elements to compare the I/O overhead of 
update approaches. Finally, we propose a direct update approach, namely data block update. The summarization and notation of the 
equations are completed represented as follows. 

B.  Mapping of Update Requests 
The update process of storage systems and update requests, we first derive how storage systems map update requests into the data 
and parity blocks. Erasure codes typically portioned into multiple stripes , we now use an example to introduce  update request 
which mapped into the stripe. The update request of the ݅௧௛ file is mapped into three data blocks d0, d1, d2 and parity block p0. We 
can calculate parity block p0 by the following expression 

ℎ0 = 0ݓ 2ݓ⊕1ݓ⊕ …  ௞ିଵ,        (7)ݓ⊕.
      ௜is represented as the ݅௧௛ data block in a given stripe or data block set. ℎ௜ is represented as the ݅௧௛parity block in a given stripe orݓ
parity block set. ݓ௜,௝ represented as the ݆௧௛ data block in the ݅௧௛ data disk in a given stripe. 
Where ⊕ represents the XOR operation. For simplicity, we use ⊕௜ୀ଴

௟ 2ݓ⊕1ݓ⊕0ݓ ௜ to representݓ …  ௜Therefore, we canݓ⊕.
transform Eq. (1) to 
                                   ℎ0 =⊕௜ୀ଴

௞ୀଵ  (8)                    ݅ݓ 
௜ݓ
௥ is represented as the value of data block ݅ݓ in update round r.ℎ௜ ,௝ represented as  the ݆௧௛ parity block in the ݅௧௛  parity disk in a 

given stripe .Since the update request is mapped into the stripe, it incurs the data changes in both data blocks and parity blocks. As a 
result, the storage system should update several data blocks, as well as parity blocks, to maintain the data consistency of the stripes. 
Next, we define two approaches to update parity blocks according to update requests. 

C.  Two Kinds of Update Approaches 
There are two types of blocks when storage systems update data. One type of blocks will maintain their original values after storage 
1) Reconstructed-Write (RCW): The purpose of RCW its creates new data block from Existing blocks. The following expression 

for RCW 
 

    ℎ௜௥ାଵ = ൫⊕௝ୀ଴
௩ିଵ ௝௥ାଵ൯ݑ   ⊕  ൫⊕௟ୀ଴

௬ିଵ   ௟௥ାଵ൯  (9)݋ 
ℎ௜௥  represented as the value of parity block hi in update round r. ݑ௜௥  represented as the value of the ݅௧௛updated data block in update 
round r. 
௜௥݋   represented as the value of the ݅௧௛ original data block in update round r.RCW reads original data blocks and reconstructs the new 
value ݌௜௥ାଵ i of the parity block ݌௜ in update round r +1.Where ݑ௝௥ାଵ  is the value of updated data block uj and݋௟௥ାଵ l is the value of 
original data block ݋௟ in update round r +1.               
2) Read-Modify-Write (RMW): The purpose of the RMW  reads the original content and parity blocks modify old values. The 

following expressions for RMW 
ℎ௜௥ାଵ  = ℎ௜௥ ⊕൫⊕௝ୀ଴

௩ିଵ ௝௥ାଵ൯  ൫⊕௝ୀ଴ݑ 
௩ିଵ         ௝௥൯      (10)ݑ 

௜௥݋.௜௥  represented as the value of the ݅௧௛updated data block in update round rݑ   represented as the value of the ݅௧௛ original data block 
in update round r 
RMW reads original data blocks and parity blocks  modifies the old value ℎ௜௥ to the new value ℎ௜௥ାଵ i in updated round r+1 . The 
system finished the update process. The other will modify their data according to update requests. We call them original blocks and 
updated blocks, respectively. Suppose there are y original data blocks and v updated data blocks in the stripe. parity block pi has 
been updated for r rounds, we use ݌௜௥ to represent the value of parity block pi in update round r. There are two approaches to update 
parity block pi [15]. 
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Fig.4. The software architecture of SWALLOWFS. 

IV. MODIFIED UCODR ALGORITHM 
Modified UCODR algorithm has two update approaches(RCW,RMW).Accordingly we construct the scheduling algorithm modified 
as UCODR. In real-world challenges, Analysis of  how the update sequence are reason for affection in I/O overhead. Based on the 
notion, we propose an algorithm modified UCODR scheduling algorithm. Through theoretical analysis ,and we  prove that Modified 
UCODR algorithm can effectively reduce the I/O overhead of update operations in practical storage systems. This algorithm 
implementation is also connected with Big data storage systems. 
Scheduling algorithm is update sequence with in  time limit. When updating the parity blocks ,Modified UCODR minimizes the I/O 
overhead which caused by reading the data blocks. The parity blocks are encoded with XOR data blocks.    We implement a 
prototype storage system, namely SWALLOWFS. The SWALLOWFS contains about 45,000 lines of codes in C language. In which 
the source code available at 
https://githud.com/UCODR/SWALLOWFS .  
the storage system executes updates operation as follows. The storage system update data blocks according to the update requests. a 
blocker to construct data block by the implementation. the storage system uses scheduling algorithm to encode parity blocks to data 
blocks. Accordingly ,We use MYSQL database to store metadata files including like(e.g, filename and attributes) 
UCODR can use either data or parity blocks as source blocks to update each parity block.  
Accordingly UCODR needs to compare the  elements of both data and parity blocks as follows. 
If the source element is a data block, UCODR compares. The read data block number of RCW for parity block ݌௜ and the read data 
block number of RMW for parity block ݌௜. 

௧௢௧௔௟ܥ = ௗ௔௧௔ܥ + ௗ௔௧௔ܥ ≤ −݉.ݓ)4 1) + 2 = ݓ.4 − 2               (11)        
                                                                                        

V. EVALUATION 
To verify the efficiency of our approach. We should introduce  environment setting and  then, analyze the experimental results to 
show the advantage of our scheme compared with current update approaches. 
A. Environment Setup: 
We deploy the prototype storage system in a HP Pro book 5320m server with  Seagate HDD (Hard Disk Drive) disks. We mount 
these disks in the local file system, so that all the disk I/O operations can be executed within the user application. To better simulate 
the real data storage environment, we employ a real-world I/O level trace set. In particular, We only focus on the write requests, 
since the read requests do not involve the update process. Note, the read workload can enhance the efficiency of update operations 
by caching the blocks, which have been read by the read workload, in the memory. Since various erasure codes are used in practice, 
we also employ five erasure codes. Such codes are widely adopted in reality to ensure data reliability [2], [3], [4], [5], [6], [7], [8]. 
The setting of these erasure codes is depicted . 
Evaluate update time (i.e., the time to complete the update process) and throughput, which is measured by the processed data 
volume divided by the cumulative update time. These metrics are widely used in evaluating the performance of storage systems 
[12], [13], [14], [15], [16], [17]. For each trace, we randomly select 100 continuous write requests, and let our prototype storage 
system perform such requests. Each result is obtained by running the experiment for 1000 times, respectively. Average the results to 
obtain the performance of the setting and then  use ms (millisecond) and MB/s (MB per second) as units to measure update time and 
through put. We compare our proposed scheme UCU with current update approaches (i.e., RCW, RMW, and DBU) under different 
traces, update sizes, block sizes, and erasure codes, since these approaches are widely used to update parity blocks in practice [14], 
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[15], [16], [17]. In particular, UCU can reduce the update time by up to 35 percent compared with RCW, 26 percent compared with 
RMW, and 15 percent compared with DBU, and improve the throughput by up to 67 percent compared with RCW, 42 percent 
compared with RMW, and 27 percent compared with DBU. Moreover, we also evaluate the performance of update operations for 5 
different block sizes: 16 KB, 32 KB, 64 KB, 128 KB, and  256 KB, since the default block sizes of storage systems are typically 
smaller than 256 KB [21], [22], [23]. The results are shown in Figs. 12b and 13b. In general, UCU can efficiently enhance the 
efficiency of data update compared with current approaches when the block size is small, since more data blocks will be updated 
with the same update request. Then, we compare the efficiency of update operations under 5 different update sizes: 32 KB, 64 KB, 
128 KB, 256 KB, and 512 KB, since the update sizes are generally smaller than 512 KB in practice [14]. The results are shown in 
Figs. 5 and 6. In short, UCU can significantly improve the performance of storage systems 
compared with current update approaches under different update sizes. The results are shown in 
Figs. 5 and 6. For different erasure codes, UCU can improve the performance of update operations compared with other approaches. 
Therefore, our scheme can effectively enhance the efficiency of data update in reality, since these codes are widely deployed in 
practice. 

VI. CONCLUSION 
The disk I/O overhead of data updates is one of the most important bottlenecks in modern storage systems. In this paper, we 
consider the problem of how to reduce the I/O overhead for multi-block updates in erasure coding based storage systems. By 
analyzing the update process, we figure out that the I/O overhead of update operations is severely affected by the order of these 
operations. Accordingly, we propose an efficient algorithm, namely UCODR, to reduce the I/O overhead by scheduling the update 
sequence. We further evaluate the performance of UCODR in a prototype storage system with real world traces. The experimental 
results show that UCODR can significantly improve the performance of update operations for different erasure codes, compared 
with current update approaches. In future work, we plan to deploy UCODR in a real-life storage system.  

 
ERASURE CODE                                       BLOCK SIZE(KB) 

a).Update time for RCW,RMW,DBU                                                             b).Update time for RCW,RMW,DBU 
UCU under different traces                                                 UCU under different block size 
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