[J, K]-Set Domination of Path Graphs

N. Murugesan ${ }^{1}$, P. Elangovan ${ }^{2}$
${ }^{1,2}{ }^{2} P G$ and Research Department of Mathematics, Government Arts College, Coimbatore-641018

Abstract: Domination is an important graph theoretic concept in graph theory. Various types of dominations have been studied

 in the literature. In this paper, the [j, k]-dominations have been considered for path graphs. By [j, k]-domination we mean, every vertex of the complement of the dominating set has at least j adjacent vertices and atmost k adjacent vertices in the dominating set. In particular the [j, k]- domination number of a graph is the cardinality of the smallest such set. In this paper, the [j, k]domination number for path graphs have been studied.Mathematics subject classification: 05 C69Keywords: Dominating set, Domination number, [j, k]-dominating set, [j, k]-domination snumber.

I. INTRODUCTION

Let $G=(V, E)$ be a simple graph. A subset D of V is a dominating set of G if every vertex $v \in V-D$ is adjacent to a vertex of D. The domination number of G denoted by $\gamma(\mathrm{G})$ is the minimum cardinality of a dominating set G . A dominating set is a total dominating set if every vertex in G (including the vertices in D) have a neighbour in D.

II. [J,K]-SET DOMINATION

A. Definition

A set $\mathrm{D} \subseteq \mathrm{V}$ is called $[\mathrm{J}, \mathrm{K}]$ - set dominaton if for any vertex $\mathrm{v} \in \mathrm{V}-\mathrm{D}, \mathrm{j} \leq|\mathrm{N}(\mathrm{v}) \cap \mathrm{D}| \leq \mathrm{k}$, i.e. there are atleast j vertices adjacent to v , but not more than k vertices in D . The smallest cardinality of $[\mathrm{j}, \mathrm{k}]$ - set is called $[\mathrm{j}, \mathrm{k}]$ - dominating set. The $[\mathrm{j}, \mathrm{k}]$ - domination number is denoted by $\gamma \mathrm{j}, \mathrm{k}(\mathrm{G})$

B. Example

In the above graph $\{\mathrm{v} 2, \mathrm{v} 5, \mathrm{v} 10\}$ is a dominating set but it is not $[1,2]-$ dominating set because the vertex v 1 is adjacent to 3 vertices, Also this is not a total dominating set.
C. Example

The set $D=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$ is a dominating set,
$\mathrm{V}-\mathrm{D}=\{\mathrm{v} 4, \mathrm{v} 5, \mathrm{v} 6\}$
$N(\mathrm{v} 4) \cap \mathrm{D}=\{\mathrm{v} 1, \mathrm{v} 2\} \cap \mathrm{D}=\{\mathrm{v} 1, \mathrm{v} 2\}$; Therefore $|\mathrm{N}(\mathrm{v} 4) \cap \mathrm{D}|=2$
$N(v 5) \cap D=\{v 2, v 3\} \cap D=\{v 2, v 3\} ;$ Therefore $|N(v 5) \cap D|=2$
$N(v 6) \cap D=\{v 1, v 2, v 3\} \cap D=\{v 1, v 2, v 3\} ;$ Therefore $|N(v 6) \cap D|=3$
Thus D is [2,3]- dominating set.

D. Note

In general, every dominating set need not be a $[\mathrm{j}, \mathrm{k}]$ - dominating set, but the converse is always true. The trivial example for the converse part is that the dominating numbers of paths and cycles. As a generalization we have the following lemma.

E. Lemma

Let G be a graph with $\Delta(\mathrm{G})=2$. Then $\gamma(\mathrm{G})=\gamma_{[j, k]}(\mathrm{G})$.

1) Proof: Let G be graph with $\Delta(G)=2$. Then every vertex v in V has atmost 2 neighbours. Therefore $j=1$ and $k=2$, the least possible values of j and k. Hence the Lemma.

III. [J,K]-DOMINATION IN PATHS

A. Theorem ${ }^{[1]}$

The domination number of path P is $\gamma\left(\mathrm{P}_{\mathrm{n}}\right)=\left\lfloor\frac{n+2}{3}\right\rfloor$
The domination number of cycle C is $\gamma\left(\mathrm{C}_{\mathrm{n}}\right)=\left\lfloor\frac{n+2}{3}\right\rfloor$

B. Theorem ${ }^{[2]}$

For $\mathrm{n}>2, \mathrm{P}_{\mathrm{n}}$ has a [1,2]-dominating set except $\mathrm{n}=3 \mathrm{k}, \mathrm{k}=1,2,3 \ldots$

1) Proof: To prove this theorem, we prove that there is atleast one $\mathrm{v} \in \mathrm{V}-\mathrm{D}$, such that $\mathrm{N}(\mathrm{v})$ has two vertices in D , when n is not a multiple of 3 , and when $n=3 k$, for every $v \in V-D, N(v)$ has exactly one vertex in D.
As an example, consider $\mathrm{P}_{8}, \mathrm{P}_{9}$

Fig 3.2 paths P_{8} and P_{9}
Where $\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{7}\right\}$ and $\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{8}\right\}$ are dominating sets of P_{8} and P_{9} respectively and $\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{8}\right\}$ is the only dominating set of P_{9}, therefore P_{9} has no [1, 2]- dominating sets.
C. Theorem ${ }^{[3,4,5]}$

The number of $[1,1]$ - dominating sets in the path graph $P_{n}, n \geq 3$

$$
n\left[\gamma_{[1,1]]}\left(P_{n}\right)\right]= \begin{cases}1 & \text { if } n=3 k, k=1,2,3, \ldots \\ 2 & \text { if } n=4 \text { and } n=3 k+2, k=1,2,3, \ldots \\ 3 & \text { if } n=3 k+1, k=2,3,4, \ldots\end{cases}
$$

Proof: Let $v_{1}, v_{2}, \ldots \ldots, v_{n}$ are the vertices of the path P_{n}, such that v_{i} is adjacent to $v_{i}+1, i=1,2,3, \ldots, n-1$.

International Journal for Research in Applied Science \& Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 7 Issue IV, Apr 2019- Available at www.ijraset.com

In path graph degree of each internal vertex is 2 and the degree of end vertices is 1 . Hence every vertex dominates at most 2 vertices. Now we claim that in path graphs: P_{n}, when $n=3 k, k=1,2,3 \ldots$ there is a minimum dominating set D in which every vertex dominates exactly 2 vertices and every vertex in V-D is dominated by exactly one vertex. This proves that there is exactly only one [1,1] - dominating set. For this let us decompose the vertex set V in $\mathrm{P}_{3 \mathrm{k}}$ into k number of sets each contains 3 vertices in the form $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}+2}$. Here $\mathrm{V}_{\mathrm{i}+1}$ dominates v_{i} and $\mathrm{v}_{\mathrm{i}+2}$. Hence every set contains a vertex of D and the remaining two vertices in that set are dominated by only this vertex. Thus there are k such vertices namely $\mathrm{v}_{2}, \mathrm{v}_{5}, \ldots \ldots \mathrm{v}_{\mathrm{n}-1}$.
Which can be generalized as given below.

$$
\begin{aligned}
& \qquad D_{[1,1]}\left(P_{n}\right)=\left\{\mathrm{v}_{\mathrm{n}+2-3 \mathrm{k} 1} ; \mathrm{k}_{1}=1,2,3,4, \ldots, \mathrm{k}\right\} \\
& \text { Hence, } \gamma_{[1,1]}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{k} \\
& \text { Suppose if } \mathrm{n}=4 \text {, the }[1,1] \text {-dominating set are }\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\} \text { and }\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\} . \\
& \text { Hence, } \gamma_{[1,1]}\left(\mathrm{P}_{4}\right)=2
\end{aligned}
$$

In path graph P_{n} when $n=3 k+2, k=1,2,3 \ldots \ldots$. there are two dominating sets and there is a minimum dominating set D in which end vertex v_{1} dominates v_{2} in the first dominating set and the end vertex v_{n} dominates $\mathrm{v}_{\mathrm{n}-1}$ in the second dominating set. The remaining vertices in two dominating sets dominate exactly 2 vertices and every vertex in V-D is dominated by exactly one vertex. This proves that there are two [1,1]-dominating sets.
Which can be generalized as given below.
Therefore if $n=3 k+2, k=1,2,3, \ldots$. the $[1,1]$ - dominating set is

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n}+2-3 \mathrm{k} 1} \text {, when } \mathrm{k} 1=1,2, \ldots \ldots,(\mathrm{k}+1) \\
& \mathrm{V}_{\mathrm{n}+3-3 \mathrm{k} 1} \text {, when } \mathrm{k} 1=1,2, \ldots \ldots,(\mathrm{k}+1)
\end{aligned}
$$

In path graph Pn when $\mathrm{n}=3 \mathrm{k}+1, \mathrm{k}=2,3 \ldots$...there are 3 dominating sets and there is a minimum dominating set D in which end vertices v_{1} dominates v_{2} and $v n$ dominates v_{n-1} in the first dominating set. In the second dominating set v_{n-1} dominates v_{n} and v_{n-2} dominates $\mathrm{v}_{\mathrm{n}-3}$. In the third dominating set v_{2} dominates v_{1} and v_{3} dominates v_{4}. The other vertices in three dominating sets dominate exactly two vertices. Every vertex in V-D is dominated by exactly one vertex. This proves that there is exactly three [1,1]dominating sets. Decompose the vertex set in V of $P_{3 k+1}$ except the end vertices in the first dominating set, the vertices vn-1, vn- 2 in the second dominating set and v_{2}, v_{3} in the third dominating set in the form v_{i}, v_{i+1}, v_{i+2}. Here v_{i+1} dominates v_{i} and v_{i+2}. Hence every set contains a vertex of D and the remaining two vertices in that set are dominated by only this vertex. Such vertices are $\mathrm{v}_{4}, \mathrm{v}_{7}, \mathrm{v}_{10}, \ldots$. in the first dominating set, $\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{8} \ldots$. in the second dominating set and $\mathrm{v}_{6}, \mathrm{v}_{9}, \mathrm{v}_{12} \ldots$ in the third dominating set.
Which can be generalized as given below.
Therefore if $\mathrm{n}=3_{\mathrm{k}+1}, \mathrm{k}=2,3,4, \ldots \ldots[1,1]$ - dominating set is

$$
\begin{aligned}
\mathrm{D}_{[1,1,1]}\left(\mathrm{P}_{\mathrm{n}}\right) & =\left\{\begin{array}{l}
\mathrm{V}_{\mathrm{n}+3-3 \mathrm{k},}, \\
\mathrm{~V}_{\mathrm{n}+1-3 \mathrm{k},}, \\
\mathrm{~V}_{\mathrm{n}+2-3 \mathrm{k} 1}, \\
\mathrm{~V}_{\mathrm{n}+1-3 \mathrm{k} 1}, \mathrm{~V}_{\mathrm{n}+2-3 \mathrm{k} 1},
\end{array}\right. \\
& \text { Hence, } \gamma_{[1,1]\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{k}+2}
\end{aligned}
$$

when $\mathrm{k} 1=1,2, \ldots, \mathrm{k}+2$
when $\mathrm{k} 1=1,2, \ldots, \mathrm{k}+2$
when $\mathrm{k} 1=1,2, \ldots, \mathrm{k}+2$

IV. CONCLUSION

In this paper we have generalized the [j, k]-dominating number of path graphs. Similarly we can study $[\mathrm{j}, \mathrm{k}]$-dominating number of some other special graphs like cycles, helm and etc.

REFERENCES

[1] Haynes, T.W.; Hedetniemi, S.T.; and Slater, P.J. Fundamentals of Domination in Graphs. Newyork:Dekker, 1998.
[2] N.Murugesan and Deepa.S.Nair, (1, 2)-Domination In Graphs, J.Math. Comput. Sci. 2 (2012), No. 4, 774-783, Issn: 1927-5307.
[3] Chengye zhao2 and chao Zhang, [1,2]-Domination in Generalized Petersen Graphs1, Applied Mathematical Science, Vol. 9, 2015, no. 64, 3187 - 3191.
[4] K.Ameenal Bibi1, A.Lakshmi2 and R.Jothilakshmi3, Applications of Distance - 2 Dominating Sets of Graph in Networks, Advances in Computational Sciences and Technology, ISSN 0973 - 6107 Volume 10, Number 9 (2017) pp. 2801-2810.
[5] Mustapha Chellalia, Teresa W. Haynesb,*, Stephen T. Hedetniemic, [1, 2]- sets in graphs, Discrete Applied Mathematics 161 (2013) 2885 - 2893.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

