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Abstract: The enormous growth and volume of online social networks and their features, along with the vast number of socially 
connected users, it has become difficult to explain the true semantic value of published content for the detection of user 
behaviors. Without understanding the contextual background, it is impractical to differentiate among various groups in terms of 
their relevance and mutual relations, or to identify the most significant representatives from the community at large. In this 
paper, we propose an integrated social media content analysis platform that leverages three levels of features, i.e., user-generated 
content, social graph connections, and user profile activities, to analyze and detect anomalous behaviors that deviate 
significantly from the norm in large-scale social networks. Several types of analyses have been conducted for a better 
understanding of the different user behaviors in the detection of highly adaptive malicious users.  
Keywords: Malicious activity, social network, user behaviors. 

I. INTRODUCTION 
Online Social Network activities has greatly expanded in both scope and volume, opening new opportunities for public exposure can 
be fully expected that this tendency will continue to accelerate, thereby facilitating the possibility of a more immersive examination 
of social behaviors and attitudes than ever before[1]. In addition to their increasingly impressive volume, social networks consist of 
context-sensitive and relational data while also including a considerable amount of malicious content. Taken together, these factors 
are forming a completely new social field,[5]suitable for observing and classifying many fascinating phenomena With an increase in 
the use and benefits of online social network comes an increase in various challenges. 
One of the major challenges facing such networks today is the creation of false online identities.[2] Malicious behaviors can be 
described in general terms as the sum of all activities conducted by a platform user that break or circumvent the official terms and 
conditions, usually for the purposes of material benefit of the perpetrator. This type of activity has a decidedly detrimental effect on 
the performance of the entire system, as well as the personal experience of individual users Malicious users are financially harmful 
to the OSN platform, [10]and are, therefore, being actively suppressed by all social networks Most of the previously tested methods 
from this group suffer  from serious deficiencies. On most platforms, establishing a difference between ill-intentioned users who 
represent a danger to the community, [14] and inactive users who rarely interact with others, is not easy. Because intruders are 
keenly aware of this blind spot, they are able [8] to plant numerous bot fake profiles that cannot be immediately spotted and 
removed. To as certain the reliability of online personalities, we have to introduce a mechanism that helps detect and differentiate 
between malicious users and in frequent user. 

 
Fig 1 Data Collection through a social network aggregator. 
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II. USER BEHAVIOR DATASETS 
The Twitter dataset consists of a random sample of 100K out of the 19M Twitter users who joined before August 2009 [4]. Previous 
work [4] identified topical experts in Twitter and the topics of interests of users were inferred (e.g., technology, fashion, health, etc) 
by analyzing the profile of topical experts followed by users. In this dataset, each expert’s profile is associated with a set of topics of 
expertise. We construct a spatial histogram by randomly grouping multiple topics (34,334 of them) into 687 topic-groups and 
counting the number of experts a user is following in a given topic-group. The Twitter dataset does not have temporal features. 

III. RELATED WORK 
We survey approaches to detecting misbehaving identities along two axes. 
1) Supervised Learning: Most existing work on detecting misbehaving identities in social networks leverage supervised learning 

techniques  propose a scheme that deploys honeypots in OSNs to attract spam, trains a machine learning (ML) classifier over 
the captured spam, and then detects new spam using the classifier. Rahman et al. [5] propose a spam and malware detection 
scheme for Twitter using a Support Vector Machines-based classifier trained using the detected malicious URLs. The COMPA 
scheme [10] creates statistical behavioral profiles for Twitter users, trains a statistical model with a small manually labeled 
dataset of both benign and misbehaving users, and then uses it to detect compromised identities in Twitter. While working with 
large Social networking systems, supervised learning approaches have inherent limitations. Specifically they are attack-specific 
and vulnerable to adaptive attacker strategies. Given the adaptability of the attacker strategies, to maintain efficacy, supervised 
learning approaches require labeling, training, and classification to be done periodically. In this cat-and-mouse game, they will 
always lag behind attackers who keep adapting to make a classification imprecise. 

 

2) Unsupervised Learning: Unsupervised learning-based anomaly detection has been found to be an effective alternative to non-
adaptive supervised learning strategies [12]. For example, Li et al. [4] propose a system to detect volume anomalies in network 
traffic using unsupervised PCA-based methods. AutoRE [6] automatically extracts spam URL patterns in email spam based on 
detecting the bursty and decentralized nature of botnet traffic as anomalous. In crowdsourcing scenarios, Wang et al. [15] 
proposed a Sybil detection technique using server-side click stream models (based on user behavior defined by click through 
events generated by users during their social network browsing sessions). While the bulk of the paper presents supervised 
learning schemes to differentiate between Sybil and non-Sybils based on their click stream behavior, they also propose an 
unsupervised approach 14that builds click stream behavioral clusters that capture normal behavior and users that are not part of 
normal clusters are flagged as Sybil. However, their approach still requires some constant amount of ground-truth information 
to figure out clusters that represent normal click-stream behavior. Tan Xn Raun [6] use a user-link graph along with the OSN 
graph to detect some honest users with supervised ML classifier and then perform an unsupervised analysis to detect OSN 
spam. Copy Catch [3] detects fraudulent likes by looking for a specific attack signature  groups of users liking the same page at 
around the same time (lockstep behavior). Copy Catch is actively used in Facebook to detect fraudulent likes, however as 
evidenced in Table 1, it is not a silver bullet. While we welcome the push towards focusing more on unsupervised learning 
strategies for misbehavior detection, most of the current techniques are quite ad hoc and complex. Our approach using Principal 
Component Analysis provides a more systematic and general framework for modeling user behavior in social networks, and in 
fact, our PCA-based approach could leverage the user behavior features (e.g., user click-stream models [21]) used in existing 
work for misbehavior detection. 
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Classified As                        Number of users 

 

Black-market                                  470 
Compromised                                 109 
Colluding                                        345 
Unclassified (no consensus)            484 

Table 1: Anomaly class predicted for the ad users that are flagged. 

A. Prevention Mechanism 
Prevention mechanisms place the core weight on protecting the user profiles in a social network.The strategy here is to make the 
creation of user profiles on social networks a difficult work, rather than trying to find such profiles and close them down once they 
have joined the social network. This strategy works well against certain types of maliceous, particularly in those scenarios in which 
the users may want to create many different fake profiles within a very short period of time in a bid to undertake malicious activities 
in a particular social network. Prevention mechanisms rely on strong verification processes that can go as far as requesting users to 
send copies of their identification before they can create a profile [17], [20], [5]. This type of technique is otherwise known as a 
Sybil prevention technique, and though quite powerful, such techniques are not commonly used given that they are not very popular 
among modern web users. The more popular approach among Sybil prevention mechanisms is the use of automated systems aimed 
at verifying whether a request has been sent by a real user or not [7]. This comes in the form of a CAPTCHA, where the user is 
asked to feed in a string of characters or resolve a given logical challenge [8], [15], [17],[20]. Hackers are becoming smarter, 
however, and are finding their way around such automated systems. What is even worse is that users can still be able to harvest a 
large number of bot profiles if legally registered profiles can collude together with fake profiles to undertake malicious activities. 
This means that Sybil prevention techniques are quite inefficient when it comes to system abuses conducted by legally registered 
users. 

B. User Behavior-Based Mechanism 
Solutions to this form compile and use historical data for certain users by keeping tabs on their activities over a given period of the 
time [3], [14], [22], [20]. Tracking is made possible given that the interactions between a profile and the elements of a  online social 
network can be logged. In other words, users form connections with the elements as they interact in the network, e.g.,through 
communication with other users. Researchers in this category use data and machine-learning methods to find users 
that do not conform to certain rules; such techniques usually compare the user activities to a predefined set of activities [1], 
[11], [23], [8]. In most cases, history-based algorithms need to have a set of predefined standards that describe legitimate users, 
hence ensuring that the systems adopt the strategy of finding Sybil profiles. Some algorithms look through all user activities to 
check for any malicious actions or content, such as texts, images ,or videos. The algorithms then use these past online activities as 
baseline indicators to future traits. Such algorithms factor in several aspects of a user’s online behaviors, such as the linguistic 
aspects of the content, e.g., the language style [5], [21], [18], [10].All three categories used against Sybil attackers rely on the Sybil 
profiles depicting significant anomalous traits, which do not always exist. Sybil profiles have evolved in terms of their 
disruption models, meaning that there is a need for defensive methods to keep evolving along the same lines. There is also a need 
for algorithms that can find hijacked profiles and profiles colluding to subvert the reputation of the system. In this regard, we present 
and outline such a solution in the following section. 

 
Fig3. Generation of CyberAttack Vectors. 
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IV. PROPOSED METHODOLOGY 
The proposed system architecture is realized through four separate layers, which are mutually related in a structured manner, with 
every module having direct communication with every other module along with an outlet to an open database. Our proposed system 
is based on multiple layers that facilitate simple scaling and upgrading to fit any need. The purpose, conceptual foundation, and 
practical application of each layer are described as follows. 

A.  Social Sensing Layer 
Its role is to formulate and execute precise requests to the selected social system, classify the returned data, and sort the data based 
on their relatedness to the subject of the request with respect to the parameters that come from the request parameters handler. It also 
passes the response of the requests to the request-response manager, which helps manage the collected responses and extract the 
data 

B.  Data Acquisition and Preparation Layer 
 In this layer, we describe the steps that are involved in gathering and cleaning data as a part of the acquisition and preparation 
processes for analysis 

C.   Data Storage Management Layer 
This layer is closely coordinated with the previous one, teaming up to properly utilize the information originally collected  from the 
selected social media (e.g. Twitter) and Stored in file system 

D.  Analysis Representation Layer   
During the procedure of social media content exploration and analysis, our proposed platform actively seeks relevant trends in any 
of the dimensions of the collected data that could be taken as illustrative of the general behavior on the network. 

 

 

 

 

 

Fig 3 Layers of system Architecture. 

V. CONCLUSION 
From this review paper it's to present an integrated system with analytic abilities to detect malicious activities in OSNs. The system 
is expected to carefully examine and track social interactions on data consisting of textual content before reaching to an assumption 
of the activity by the user account to be real or malicious. 
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