

7 V May 2019

https://doi.org/10.22214/ijraset.2019.5400

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue V, May 2019- Available at www.ijraset.com

 ©IJRASET: All Rights are Reserved 2415

Performance Analysis of Floating Point Multiplier
Designs

Hemalatha K N1, Shashikala M R2, Seema Bhanu K I3, Shwetha S M4, Sundari G5

1, 2, 3Assistant Professor, ECE Dept), 4, 5Dr.Ambedkar Institute of Technology, Mallathalli, Bangalore-56
(An Autonomous Institute aided by the Government of Karnataka, Affiliated to VTU- Belagavi)

Abstract: Floating point multiplier is the most typical illustration these days for real numbers on computers or laptops. This
paper describes about a single precision floating point multiplier for better area, delay and the timing performance. The main
object of the paper is to reduce the area, the delay and to increase the speed of execution by using shift and add and array
multiplier for multiplying two floating point numbers. The implementations tradeoffs are area, speed, delay and accuracy.
Floating point multiplier handles overflow and underflow cases. For high accuracy of the results normalization is additionally
applied. By the use of pipelining process this multiplier is very good at speed and accuracy compared with previous multiplier.
This pipelined architecture is described in Verilog code. The Timing performance is measured with Xilinx Timing Analyzer and
Timing performance is compared with the normal multipliers.
Keywords: floating point multiplier, single precision, multipliers, adders, Verilog code.

I. INTRODUCTION
Because of the quality of the algorithms, floating point operations are very hard to implement on FPGA. The computations for
floating point operations involve massive dynamic range, however the resources required for this operations is high compared with
the integer operations. We have unsigned/unsigned multiplier for multiplication of binary numbers, for multiplication of floating
point numbers floating point multiplier is used. There is a separate algorithm for this multiplication. Floating point numbers are
represented in binary format; the IEEE 754 standard represents two floating point formats, Binary interchange and Decimal
interchange format. Multiplying floating point numbers is a requirement for DSP applications involving large dynamic range.[9]

A. Floating Point Multiplier
This multiplier factor is mainly used to multiply two floating point numbers. Separate algorithm is essential for multiplication of
those numbers. Here multiplication operation is easy than addition this is especially true if we are employing 32-bit format.

B. Floating Point Format
One of the way to represent real numbers in binary is floating point format. There are different formats for the IEEE 754 standard.
Binary interchange format and decimal interchange format. In the multiplication of floating point numbers involves a massive
dynamic range which is useful in DSP applications. This paper concentrates solely on single precision normalized binary
interchange format. Thefigure 1.1shows the single precision binary format representation; consisting of 1 bit sign(S),an 8 bit
exponent€, and a 23 bit fraction (M or Mantissa).[9]

Fig1.1single precision format

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue V, May 2019- Available at www.ijraset.com

 ©IJRASET: All Rights are Reserved 2416

The term floating point actual refers the radix point (decimal point ,or more commonly in computers, binary point) can “float”, that
is ,it can be placed anywhere relative to the significant digits of the number. Thisposition is indicated individual within the
representation and floating point number representation will therefore be thought of as a computer realization of scientific notation.
Over the years, a spread of floating point numbers representation have been employed in computers. However,since the Nineteen
Nineties, the most unremarkably encountered representation is that outlined by the IEEE 754 standard.[9]
The advantage of floating point representation over fixed point and number representation is that it can support a way wider vary of
values. Forexample, a hard and fast fixed point representation that has seven decimal digits with 2 decimal places will represent the
numbers 12345.67,123.45,1.23 and so on, whereas a floating point representation (such as the IEEE754 decimal32 format) with
seven decimal digits could in addition represent 1.234567,123456.7,0.00001234567,12345670000000000,and so on. The floating
point format desires slightly additional storage (to encrypt the position of the radix point), therefore stored within in the same area,
floating point numbers achieve their bigger range at the expense of precision.[9]

II. FLOATING POINT MULTIPLICATION ALGORTHIM.
Floating point multiplication are used in many digital circuits and signal processing computations, floating point multiplication
design involves overflow and underflow.in this normalized floating point number have the form of Z=(-1S)*2(E-Bias)*(1.M).[9]
To multiply two floating point numbers it involves following steps:

A. Multiplying the significant; i.e. (1.M1*1.M2).
B. Placing the decimal point in the result.
C. Adding the exponents; i.e. (E1+E2-Bias).
D. Obtaining the sign; i.e. S1xor S2.
E. Normalizing the result; i.e. obtaining one at the MSB of the results “significant”.
F. Rounding the result to suit within the available bits.

Fig 2.1 process diagram

III. ADDERS
A. Ripplle Carry Adder
A ripple carry adder is a logic circuit within which the carry-out of every full adder is that thecarry in of the succeeding next most
vital full adder.it is called a ripple carry adder because each carry bit gets rippled into the next stage. In a ripple carry adder the sum
and carry out bits of any half adder stage is not valid until the carry in of that stage happens. Propagation delays within the logic
circuitry is that the reason behind this. Propagation delay is time advance between the applying of an input and occurrence of the
corresponding output. Consider a NOT gate, once the input is “0”and the output will be “1” and vice versa. The time taken for the
NOT gate’s output to become “0” when the applying of logic “1” to the NOT gate’s input is that the propagation delay
here.Similarly the carry propagation delay is that the time moves on between the applying of the carry in signal and also the
occurrence of the carry out (cout) signal. Circuit diagram of 4-bit ripple carry adder is shown below.[10]

Fig 3.1 ripple carry adder

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue V, May 2019- Available at www.ijraset.com

 ©IJRASET: All Rights are Reserved 2417

Sum out S0 AND carry out Cout of the full adder 1 is valid only after the propagation delay of full adder 1.in the same way, sum
out S3 of the full adder four is valid solely when the joint propagation delays of full adder one to full adder four[6]. In simple words,
the final results of the ripple carry adder is valid only after the joint propagation delays of all full adder circuits inside it.

B. Carry Lookahead Adder
A carry look ahead adder is a fast parallel adder because it reduces the propagation delay by additional advanced hardware, hence
it’s costlier. In this design, the carry logic over fixed groups of bits of the adder is reduced to two-level logic, which is nothing but a
transformation of the ripple carry design [8]. This method makes use of logic gates so as to the lower the order bits of the augend
and addend to see whether a higher order carry is to be generate or not.

Fig 3.2 carry look ahead adder

For an n-bit carry look ahead adder to evaluate all the carry bits, we require:
Number of AND gate = n(n+1)/2.
Number of OR gate = n

C. Carry Save Adder
A carry-save adder is a digital adder, utilize in computer microarchitecture to compute the sum of three or more n-bit numbers in
binary. It differs from different digital adders in this it outputs two numbers of the constant dimensions as the inputs, one which is a
sequence of partial sum bits and another which is a sequence of carry bits[6].

Carry save adder is mainly used to calculate partial products that are generated by integer multiplier .by using carry save adder it is
possible to reduce delay[11].

Fig 3.3 carry save adder

D. Kogge Stone Adder
The kogge stone adder may be a parallel prefix kind carry look ahead adder.The kogge stone adder takes a lot of space to implement
the Kogge stone adder, however as a lower fan-out at everystage, that increase performance typical CMOS method nodes. However,
wiring congestion often aproblem for a kogge stone adder. The lynch-Swartz lander design is smaller, as lower fan out, and does not
suffer from wiring congestion; however to be used the process node must support Manchester carry chain implementations. The
general problem of optimizing parallel prefix adders is identical to the variable block size, multilevel, carry-skip adder optimization
problem, a solution of which is found in Thomas Lynch’s thesis of 1996.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue V, May 2019- Available at www.ijraset.com

 ©IJRASET: All Rights are Reserved 2418

Fig 3.4 kogge stone adder

An example of a four bit kogge stone adder is shown in diagram. Each vertical stage produces a “propagate” and a “generate” bit, as
shown. The culminating generate bits are produced in the last stage, and these bits are XOR’d with initial propagate after the input
to produce the sum bits.e.g,the first sum bit is calculated by Xoring the propagate in the farthest-right red box (a “1”) with the carry-
in (a “0”),producing a “1”.the second bit is calculated by Xoring the propagate in second box from the right (a”0”) with C0(a
“0”),producing a “0”[1].

IV. MULTIPLIERS
A. Array Multiplier
Array multiplier is an layout of a combinational multiplier. The two’s complement multiplication is regenerate to an identical
parallel array addition problem in which each partial product bit is 1` that the AND of a multiplier bit and a multiplicand bit, and
the signs of all the partial product bits are positive. in array multiplier, consider two binary A and B,of m and n bits. There are mn
summands that are produced in parallel by a sets of mn AND gates*n multiplier requires n(n-2) full adders half adders and n2 AND
gates. Also, in array multiplier worst case delay would be (2n+1) td array multiplier factor provide optimum number of components
required, however delay for this multiplier factor is larger. It also require large number of gates because of which area is also
increased; due to this array multiplier is less economical thus, it is a fast multiplier but hardware complexity is high[7].

Fig 4.1 array multiplier

B. Shift And Add Multiplier
Shift and add multiplication is analogous to the multiplication performed by paper and pencil. This technique adds the multiplicand
X to itself Y times, where Y denotes the multiplier .to multiply two numbers by paper and pencil, the algorithm is to take the
number of the multiplier one at a time from right to left, multiplying the numberby one digit of the number and inserting the
intermediate product within the acceptable positions to the left of the earlier results. Theoriginal algorithm shifts the multiplicand
left with zeros inserted in the new positions, therefore the least significant bits of the product cannot change after they are
formed[2]. Instead of shifting the multiplicand left, we are able to shift the product to the right. Therefore the multiplicand is
fastened relative to the product, and since we tend to area unit adding only n bits, the adder needs to be only n bits wide. Only the
left half of the 2n-bit product register is changed throughout the addition. Another observation is that the product register has
associate empty space with the dimensions capable that of the number. As the empty space within the product register disappears, so
do the bits of the number.In consequence, the ultimate version of the multiplier factor combines the product (A register) with the
multiplier (Q register). The A register is just n bits wide, and therefore the product is formed within the A and Q register. Below
figure shows the new version of the circuit[3].

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue V, May 2019- Available at www.ijraset.com

 ©IJRASET: All Rights are Reserved 2419

Fig 4.2 shift and add multiplier

C. Vedic Multiplier
Multipliers are based on Vedic Mathematics. Vedic Mathematics is an ancient mathematics concept developed by Sri Bharati
Krishna Tirthaji between 1911 & 1918. It includes sixteen sutras, dealing with arithmetic, algebra, geometry, trigonometry and
calculus. Vedic Multiplier discussed in this context is based on UrdhvaTiryakbhyam Sutra (literally- “Vertically and advantage that
as the number of bits increases, the gate delay and area increases slowly. Therefore it is time, space and area efficient. The 2 u 2
Vedic Multiplier is implemented using four AND gates and two half adders. By using this sutra, the larger number (N u N) is broken
down into smaller numbers (N/2 u N/2) and these smaller numbers are again broken into still smaller numbers (N/4 u N/4) till we
reach multiplicand of size 2 u 2, thus simplifying the whole multiplication process. Hence 4 u 4 Vedic Multiplier is implemented
using four 2 u 2 Vedic Multipliers and three 4-bit adders. Also an 8 u 8 Vedic Multiplier is implemented using four 4 u 4 Vedic
Multipliers and three 8-bit adders [4]. Thus an N u N Vedic Multiplier is implemented using four (N/2 u N/2) Vedic Multipliers and
three N-bit adders. A 32 u 32 VM is shown in Fig.

Fig 4.3 vedic multiplier

V. COMPARITION RESULT

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue V, May 2019- Available at www.ijraset.com

 ©IJRASET: All Rights are Reserved 2420

VI. SIMULATION RESULT
A. Shift And Add Multiplier With Kogge Stone Adder

B. Vedic Multiplier With Kogge Stone Adder

C. Array Multiplier With Kogge Stone Adder

VII. CONCLUSION
This paper presents an implementation of IEEE 754 single precision floating point multiplier with pipelined architecture. The
multiplier just presents the significant multiplication result as is 2 bits; this gives better precision if the whole 32 bits are utilized in
another unit; the design has three pipelining stages. Timing performance is discovered with the tool Xilinx timing analyzer.
Comparative results states that the planned pipelined design is of high speed style. Proposed pipelined approach is faster compared
with conventional approach. This advantage is utilized in high speed DSP applications.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue V, May 2019- Available at www.ijraset.com

 ©IJRASET: All Rights are Reserved 2421

REFERENCE
[1] Geeta rani, “delay analysis of parallel- prefix adders”, international journal of science, engineering and technology research, July 14.
[2] IEEE 754-2008, IEEE Standard for floating- point arithmetic, 2008.
[3] Mohamed Al-Ashrfy, ashrafsalem and wagdyanis “An efficient implementation of floating point multiplier” IEEE Transaction on VLSI.
[4] Patil. S., Manjunatha , D. V., and Kiran, D. (2014, October). Design of speed and power efficient multiplier using vedic mathematics with VLSI

implementation.
[5] D. Sangwan and M. K. Yadav, “Design and implementation of adder/subtracted and multiplication units for floating point arithmetic”, in international journal

of electronics engineering,(2010),pp.197-203.
[6] BehnamAmelifard, FarzanFallah and MassoudPedram, “closing the gap between carry select adder and ripple carry adder: a new class of low power high-

performance adders”. Sixth international symposium on quality of electronics Design, pp.148-152. April 2005.
[7] Pankaj Singh, Bhavinkakani “performance comparison of floating point multipliers by using different multiplication algorithm” international journal of

electronics and communication, vol.3 issue, January 2015.
[8] Fu-Chiung Cheng Stephen H. Unger Michael Theobald Wen-Ching Cho “Delay-incentive Carry- Look ahead Adders”, VLSI Design, 1997. Proceedings. Tenth

International Conference on4-7 Jan 1997.
[9] International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 1, Issue 7, September 2012.
[10] International Journal of Advanced Research in Computer Engineering (IJARCET) Volume 9,Issue 2,Mar-Apr 2014.
[11] International Journal of Advance Research in Computer Enginerring (IJARCET) Volume 3 Issue 9,September 2014.

