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Abstract: A radio propagation model, also known as the radio frequency propagation model, is an empirical mathematical 
formulation for the characterization of radio wave propagation as a function of frequency, distance and other conditions .A 
single model is usually developed to predict the behavior of propagation for all similar links under similar constraints. Created 
with the goal of formalizing the way radio waves are propagated from one place to another, such models typically predict the 
path loss along a link or the effective coverage area of a transmitter.The channel model can vary with the antenna configuration 
in the transmitter and receiver (e.g., depending on single antenna system or multiple antenna system). Especially in the recent 
development of the multi-input and multi-output (MIMO) systems, acompletely different channel model is required to capture 
their spatio-temporal characteristics(e.g., the correlation between the different paths among the multiple transmit and receive 
antennas) [24]. This paper surveys different channel models used to characterise wireless indoor and outdoor environment. To 
develop and validate positioning algorithms under realistic conditions, an accurate knowledge of the propagation channel is 
significant.  An outdoor-to-indoor channel model is proposed based on an extension of the geometry-based stochastic modeling 
approach to fulfill the requirements. The parameters of the outdoor-to-indoor channel model are extracted from two channel 
measurement campaigns. The proposed outdoor-to-indoor channel model is capable of accurately simulating the time variant 
channel. A comparison of the channel model with the channel measurement data is performed by comparing statistics. 
Keywords: SISO Channel models, MIMO, Doppler spectrum, Power delay profile (PDP), Doppler power spectrum (PSD). 

I. INTRODUCTION 
As high-speed data services for multimedia Internet access are brought to focus, huge date rates per user are anticipated for future 
3G and 4G mobile radio systems. The most likely method of increasing capacity for wireless transmission is to exploit smart 
antennas. The algebraic framework is suitable for the description of SISO (single-input-single-output) radio transmission systems 
[8]. Channel models describe a communication channel and are essential in developing efficient wireless communication networks. 
The channel model can vary with the antenna configuration in the transmitter and receiver (e.g., depending on single antenna system 
or multiple antenna system). 
Especially in the recent development of the multi-input and multi-output (MIMO) systems, a completely different channel model is 
required to capture their spatio-temporal characteristics (e.g., the correlation between the different paths among the multiple transmit 
and receive antennas). Fading properties of indoor wireless channels are quite different from those of mobile (vehicular) channels 
due to differences in the physical environment and the consequent differences in propagation mechanisms. In mobile wireless 
channels, 5–10 (and perhaps fewer) most significant paths are usually responsible for more than 80% of power delivered between 
the transmitter and receiver antennas. Rays along those paths undergo diffraction around vertical or horizontal edges of buildings, 
reflection off building surfaces, ground reflection, vegetation scattering, and so forth. If the dominant path to the receiver is 
shadowed by an obstacle, the total power may attenuate significantly, a phenomenon that earlier we called shadow fading. 

II. INDOOR CHANNEL MODELS 
The indoor channel corresponds to the small coverage areas inside the building, such as office and shopping mall. Since these 
environments are completely enclosed by a wall, the power azimuth spectrum (PAS) tends to be uniform (i.e., the scattered 
components will be received from all directions with the same power). Furthermore, the channel tends to be static due to extremely 
low mobility of the terminals inside the building. In the wireless digital communication systems, however, the degree of time 
variation in the signal strength is relative to the symbol duration. In other words, the channel condition can be considered static 
when the degree of time variation is relatively small with respect to the symbol duration. This particular situation is referred to as a 
quasi-static channel condition [12]. In fact, the indoor channels are usually modeled under the assumption that they have either static 
or quasi-static channel conditions. 
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A.  General Indoor Channel Models 
In this subsection, we consider the two most popular indoor channel models: 2-ray model and exponential model. In the 2-ray 
model, there are two rays, one for a direct path with zero delay (i.e., 0 0  ), and the other for a path which is a reflection with delay 
of 1 0  , each with the same power (see Figure 2.1 for its PDP) [5]. In this model, the maximum excess delay is 1m   and the 

mean excess delay   is given as  1
2

  . It is obvious that the RMS delay is the same as the mean excess delay in this case (i.e., 

1
2

   . In other words, the delay of  the second path is the only parameter that determines the characteristics of this particular 

model. However, it might not be accurate, simply because a magnitude of the second path is usually much less than that of the first 
path in practice. This model may be acceptable only when there is a significant loss in the first path. 
In the exponential model, the average channel power decreases exponentially with the channel delay as follows: 

 

                                                                  (2.1) 
where d  is the only parameter that determines the power delay profile (PDP). Figure 2.1 illustrates a typical PDP of the exponential 
model. This model is known to be more appropriate for an indoor channel environment. The mean excess delay and RMS delay 
spread turn out to be equal to each other, that is, d  and  d    , in the exponential model. Meanwhile, the maximum excess 
delay is given as 
                                                                 lnAm d                                                         (2.2) 

 
  Figure 2.1 2-ray model vs. exponential model: an illustration. 

where A is a ratio of non-negligible path power to the first path power, that is,  A P / P(0) exp( / )m m d     . Note that Equation 

(2.1) can be represented by the following discrete-time model with a sampling period of  sT  

                                           max
1(p) ,p 0,1,.........,pspTP e




                                              (2.3) 

 
where p is the discrete time index with maxp   as the index of the last path, that is, max [ / ]m sp T  . A total power for the PDP in 
Equation (2.3) is given as 
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In order to normalize the total power in Equation (2.4) by one, Equation (2.3) has been modified as 
 

                                     max(0)e , 0,1,......
spT
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                                                         (2.5) 

where P(0) is the first path power. 
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B.  IEEE 802.11 Channel Model 
IEEE 802.11b Task Group has adopted the exponential model to represent a 2.4 GHz indoor channel [23]. Its PDP follows the 
exponential model as shown in Section 2. A channel impulse response can be represented by the output of finite impulse response 
(FIR) filter. Here, each channel tap is modeled by an independent complex Gaussian random variable with its average power that 
follows the exponential PDP [4], while taking the time index of each channel tap by the integer multiples of sampling periods. In 
other words, the maximum number of paths is determined by the RMS delay spread st and sampling period Ts as follows: 
                                                   max [10. / T ]sp                                                            (2.6) 
Assuming that the power of the pth channel tap has the mean of  0 and variance of  2 / 2p , its impulse response is given as   

                                                  1 2 max. , 0,......,ph Z j Z p p                                               (2.7) 

where Z1 and Z2 are statistically independent and identical Gaussian random variables, each 
with 2(0, / 2)pN  . 

As opposed to the exponential model in which the maximum excess delay is computed by a path of the least non-negligible power 
level, the maximum excess delay in IEEE802.11 channel model 
is fixed to 10 times the RMS delay spread. In this case, the power of each channel tap is given as 
                                                  /2 2

0
spT

p e                                                                (2.8) 

where 2
0  is the power of the first tap, which is determined so as to make the average received 

power equal to one, yielding 

                                                   max
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In the IEEE 802.11 channel model, a sampling period Ts must be at least as small as 1/4. Figure 2.2 shows the average channel 
power and channel frequency response for the IEEE 802.11 channel model. Since the RMS delay spread is relatively small in this 
example, the power variation in the frequency domain is within at most 15dB, which implies that frequency selectivity is not that 
significant [22]. 

 
(a)  Average channel power                                    (b) Channel frequency response 

Figure 2.2 IEEE 802.11 channel model. 

C.  Saleh-Valenzuela (S-V) Channel Model 
It has been verified by intense measurements of the indoor channel that arrivals of the multipathdelayed components can bemodeled 
as a Poisson process. More specifically, Saleh and Valenzuela have proposed a new channel model (referred to as S-V channel 
model) after finding from the indoor channel measurements that there are multiple clusters, eachwithmultiple rays, in the delay 
profile [24]. 
The S-V channel model with multiple clusters, each of which is associated with a set of rays. The arrival times of each cluster as 
well as rays in each cluster follow an individual Poisson process. Therefore, the delay of each path is not spaced in the multiple of 
sampling periods, but spaced in a rather arbitrary manner [24]. More specifically, the arrival time of the first ray in the mth cluster, 
denoted by mT , is modeled by a Poisson process with an average arrival rate of  while the arrival times of rays in each cluster is 
modeled by a Poisson process with an average arrival rate of   . Then, it can be shown that a distribution of inter-cluster arrival 
times and a distribution of inter-ray arrival times are given by the following exponential distributions, respectively [25]: 
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         1 1exp[ ],m 1,2,....
mT m m m mf T T T T                                                                        (2.10) 

and  

          , ,1 , 1 ,,
exp[ ], r 1,2,....

r m r mr m r mr m
f                                                                       (2.11) 

where ,r m  denotes the arrival time of the rth ray in the mth cluster. In Equation (2.10) and Equation (2.11), the arrival time of the 

first ray in the mth cluster, 0,m , is defined as the arrival time of themth cluster, mT  (i.e., 0,m mT  ). Let r,m and  r,m denote amplitude 

and phase of the rth ray in the mth cluster, respectively. Then, a channel impulse response is given as 

                                                     ,
, ,

0 0

r mj
r m m r m

m r
h t e t T  

 

 

                                       (2.12) 

where r,m   is a random variable that is uniformly distributed over  0,2   and  r,m is an independent random variable with the 

following Rayleigh distribution: 
                                                    2 2

, ,

,

/2
,, ,2 / r m r m

r m r mr m r mf e  
                                         (2.13) 

In Equation (2.13), ,r m  is the average power of the rth ray in the mth cluster, which is given as 

                                                , //2 2
, 0,0

r mmT
r m e e                                                          (2.14) 

where  and    denote time constants for exponential power attenuation in the cluster and ray, respectively, while 2
0,0  denotes the 

average power of the first ray in the first cluster [21]. the S-V channelmodel is a double exponential delay model in which average 
cluster power decays exponentially by following a term /mTe   in Equation (2.14 )while average ray power in each cluster also 
decays exponentially by following a term , /r me    in Equation (2.14). Once the average power of the first ray in the first cluster, 2

0,0 , 

is given, the average power of the rest of rays can be determined by Equation (2.14), which subsequently allows for determining the 
Rayleigh channel coefficients by Equation (2.13). In case that a path loss is not taken into account, without loss of generality, the 
average power of the first ray in the first cluster is set to one. Even if there are an infinite number of clusters and rays in the channel 
impulse response of Equation (2.12), there exist only a finite number of the non-negligible numbers of clusters and rays in practice. 
Therefore, we limit the number of clusters and rays to M and R, respectively. Meanwhile, a log-normal random variable X, that is, 

   2
1020log 0, xX N � , can be introduced to Equation (2.12), so as to reflect the effect of long-term fading as 

                           ,
, ,

0 0

r m
M R

j
r m m r m

m r
h t X e t T  

 

                                                             (2.15) 

 
Figure 2.3 Saleh-Valenzuela channel model. 
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Figures 2.3 show the distributions of cluster arrival times and ray arrival times, respectively, including the simulation results to be 
comparedwith the analytical ones where the mth cluster arrival time mT  and the rth ray arrival time ,r m  in the mth cluster are 

generated in such a way that each of them has an exponential distribution of Equation (2.10) and Equation (2.11), respectively. 
Figure 2.3 shows the channel impulse response of theS-V channel. Figure 2.3, showing the channel power distribution, is obtained 
by simulating 1,000 channels, from which it is clear that the channel power follows a log-normal distribution [20]. 

D.  UWB Channel Model 
According to measurements of broadband indoor channel, it has been found that amplitudes of multipath fading follow the log-
normal or Nakagami distribution rather than the Rayleigh distribution, even if they also show the same phenomenon of clustering as 
in the Saleh- Valenzuela (S-V) channel model. Based on these results, SG3a UWB multipath model has been proposed by 
modifying the S-V model in such a way that the multi-cluster signals are subject to independent log-normal fading while the multi-
path signals in each cluster are also subject to independent log-normal fading [25]. 
The ith sample function of a discrete-time impulse response in the UWB multi-path channel 
model is given as 

                                            , ,
0 0

M R
i i i

i i r m m r m
m r

h t X a t T 
 

                                             (2.16) 

where    
, ,, ,i i

i r m r mX a T and  
,

i
r m  are defined as the same as in Equation (2.15), nowwith the index i to represent the ith generated 

sample function of the channel. For simplicity of exposition, the index i in Equation (2.16) will be eliminated in the following 
discussion. As in the S-V channel model, the arrival time distributions of clusters and rays are given by two different Poisson 
processes of Equation (2.10) and Equation (2.11), respectively. The UWB channel model is different from the S-V channel model in 
that clusters and rays are subject to independent log-normal fading rather than Rayleigh fading. More specifically, a channel 
coefficient is given as 
                                                     , , ,r m r m m r mp                                                        (2.17) 

where m  represents log-normal fading of the mth cluster with the variance of  2
1  while ,r m   represents log-normal fading of the 

rth ray with the variance of 2
2  in the mth cluster. Note that independent fading is assumed for clusters and rays. In Equation (2.17), 

,r mp  is a binary discrete random variable to represent an arbitrary inversion of the pulse subject to reflection, that is, taking a value 

of +1 or -1 equally likely. As compared to the channel coefficients of the S-V channel model in Equation (2.12) which has a 
uniformlydistributed phase over  0,2 , those of UWB channel model have the phase of either  or   , making the channel 

coefficient always real [14]. Furthermore, we note that amplitude of each ray is given by a product of the independent log-normal 
random variables, m  and  ,r m . Since a product of the independent log-normal random variables is also a log-normal random 

variable, a distribution of  the channel coefficient  , 1 2 / 20
, 10 r m z z

m r m
     also follows a log-normal distribution, that is,

 2 2
10 , , 1 220log ( ) ,m r m r mN    � , with its average power given as 

                                                    ,
2 //

, 0
r mmT

m r mE e e          
                                       (2.18) 

where 0  represents the average power of the first ray in the first cluster.Meanwhile, mean of the channel amplitude for the rth ray 
in the mth cluster can be found as 

                                              
 

   2 2
1 20 ,

,

ln 1010ln 10 / 10 /
ln 10 20

m r m
r m

T   


   
            (2.19) 

Besides the same set of channel parameters as in the S-V channel model, including the cluster arrival rate  , ray arrival rate  , 
cluster attenuation constant  , ray attenuation constant  , standard deviation  x  of  the overall multipath shadowing with a log-
normal distribution, additional channel parameters such as the standard deviations of log-normal shadowing for the clusters and 
rays, denoted as 1  and  2  , respectively, are required for the UWB channel model. Note that a complete model of the multipath 
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channel h(t) in Equation (2.16) is given as a real number. Some proper modifications such as downconversion and filtering are 
required for implementing the UWB channel in simulation studies, since its bandwidth cannot be limited due to arbitrary arrival 
times. All the channel characteristics for UWB channel model, including mean excess delay, RMS delay spread, the number of 
significant paths within 10dB of peak power (denoted as 10dBNP ), and PDP, must be determined so as to be consistent with the 
measurements in practice. 

Target channel characteristics CM1 CM2 CM3 CM4 

Mean excess delay (nsec)    5.05 10.38 14.18  

RMS delay (nsec)    5.28 8.03 14.28 25 

10dBNP    35  

NP(85%) 24 36.1 61.54  

Model parameters     

  (1/nsec) 0.0233 0.4 0.0667 0.0667 

  (1/nsec) 2.5 0.5 2.1 2.1 

  7.1 5.5 14.00 24.00 
  4.3 6.7 7.9 12 

1  (dB) 3.3941 3.3941 3.3941 3.3941 

 2  (dB) 3.3941 3.3941 3.3941 3.3941 

x (dB) 3 3 3 3 

Model parameters     

Mean excess delay (nsec)    5.0 9.9 15.9 30.1 

RMS delay (nsec)    5 8 15 25 

10dBNP  12.5 15.3 24.9 41.2 

NP(85%) 20.8 33.9 64.7 123.3 

Channel energy mean (dB) -0.4 -0.5 0.0 0.3 

Channel energy std (dB) 2.9 3.1 3.1 2.7 

Table 2.1 UWB channel parameters and model characteristics [25]. 
 
Table 2.1 summarizes the SG3a model parameters and characteristics that represent thetarget UWB channel for four different types 
of channel models, denoted as CM1, CM2,CM3, and CM4. Each of these channel models varies depending on distance and whether 
LOS exists or not. Here, NP(85%) represents the number of paths that contain 85% of the total energy. CM1 and CM2 are based on 
measurements for LOS and Non-LOS environments over the distance of 0–4m, respectively. CM3 is based on measurement for a 
Non-LOS environment over the distance of 4–10m. CM4 does not deal with any realistic channel measurement, but it has been set 
up with the intentionally long RMS delay spread so as to model the worst-case Non-LOS environment [26]. CM1 shows the best 
channel characteristics with the short RMS delay spread of  5.28ns since it deals with a short distance under an LOS environment. 
Due to the Non-LOS environment, CM2 shows the longer RMS delay spread of 8.03ns, even if it has the short range of distance as 
in the CM1. Meanwhile, CM3 represents the worse channel with the RMS delay spread of 14.28; it has a longer distance under a 
Non-LOS environment. 
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Figure 2.4 Generation of UWB channel: example (CM1). 

Figure 2.4 shows UWB channel model are used to set the UWB channel parameters as listed in Table 2.1, to convert the continuous-
time UWB channel into the corresponding discrete-time one, and to generate a UWB channel model, respectively. It shows the 
UWB channel characteristics by simulating 100 CM1 channels. Here, the sampling period has been set to 167 ps. In the current 
measurement, the RMS delay spread turns out to be around 5 ns, which nearly coincides with the target value of CM1 channel in 
Table 2.1. The same observation is made for the mean excess delay [24]. 

III. OUTDOOR CHANNEL MODELS 
As opposed to the static or quasi-static nature of the indoor channel, outdoor channels are typically characterized by time variation 
of the channel gain, which is subject to the mobile speed of terminals. Depending on the mobile speed, time variation of channel 
gain is governed by Doppler spectrum, which determines the time-domain correlation in the channel gain. In this subsection, we 
discuss how to model the time-correlated channel variation as the mobile terminal moves. Furthermore, we present some practical 
methods of implementing the outdoor channel models for both frequency-flat and frequency-selective channels. 

A.  FWGN Model 
The outdoor channel will be mostly characterized by Doppler spectrum that governs the time variation in the channel gain. Various 
types of Doppler spectrum can be realized by a filtered white Gaussian noise (FWGN) model. The FWGN model is one of the most 
popular outdoor channel models. The Clarke/Gans model is a baseline FWGN model that can be modified into various other types, 
depending on how a Doppler filter is implemented in the time domain or frequency domain.We first discuss the Clarke/Gans model 
and then, its frequency-domain and time-domain variants. 

1) Clarke/Gans Model: The Clarke/Gans model has been devised under the assumption that scattering components around a 
mobile station are uniformly distributed with an equal power for each component [26]. Figure 3.1 shows a block diagram for 
the Clarke/Gans model, in which there are two branches, one for a real part and the other for an imaginary part. In each branch, 
a complex Gaussian noise is first generated in the frequency domain and then, filtered by a Doppler filter such that a frequency 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 

                                                                                                                Volume 7 Issue V, May 2019- Available at www.ijraset.com 
     

 
 

3026 ©IJRASET: All Rights are Reserved 

component is subject to Doppler shift. Finally, the Doppler-shifted Gaussian noise is transformed into the time-domain signal 
via an IFFT block. Since output of the IFFT block must be a real signal, its input must be always conjugate symmetric. 
Constructing a complex channel gain by adding a real part to an imaginary part of the output, a channel with the Rayleigh 
distributed-magnitude is generated. 

Figure 3.2 shows the time-domain characteristics of the frequency-non-selective fading channel with a Doppler frequency of 
100mf Hz and a sampling period of 50sT s . From these results, it is observed that the channel gain is time-varying with the 

Rayleigh-distributed amplitude and uniformly-distributed phase. Variation of the channel amplitude becomes more significant as the 
Doppler frequency increases, demonstrating the fast fading characteristics 
 
 
 (t)Ih  
 
 
  
                          (t) (t) (t)I Qh h jh   
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Figure 3.1 Block diagram for Clarke/Gans model. 

 
Figure 3.2 Generation of a time-varying channel with Clarke/Gans model. (a) Time-domain channel characteristics (b) Distribution 
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2) Modified Frequency-Domain FWGN Model: Since the Clarke/Gans model employs two IFFT blocks, it has disadvantages of 
computational complexity. Among many other variants of the Clarke/Gans model, we here describe one used in I-METRA 
model. 

Figure 3.3 describes a process of generating the Doppler spectrum. Let mf denote the Doppler frequency. Since the spectrum repeats 
with respect to Nyquist frequency, 2 mf , for normal sampling, it must be folded for an IFFT function to deal with the positive 
frequency components only as shown in Figure 3.3(a). When oversampled by a factor of NOS, the bandwidth of Doppler spectrum 
becomes 2D os mB N f as shown in Figure 3.3(b). Its inverse 1

D
t B  is the sample spacing in the time domain, which corresponds to 

the coherence time of the fading channel. Dividing the Doppler bandwidth into FadingN  subbands, each subband of the  length 

/m D Fadingf B N  leads to the overall length of the fading channel, given by 1 /Fading Fading D
m

T N Bf  . Meanwhile, Figure 3.3(c) 

shows a discrete-frequency Doppler spectrum and its equivalent discretetime fading channel. For the IFFT size of FadingN , the 

frequency spacing of Doppler spectrum is 
 
 
                                                          Folding 
     
 

mf  mf    0  mf  2 mf  
 (a) Normal sampling 
 
 
 2 os mB N f   1 1Fading FadingT f B N    

                                                   Fourier transform 
 
 

 f         t  
       mf os mN f     2 os mN f     0  

                                                                                                            01 1 2 os mt B N f    

 (b) Oversampling 
 

/ 2m D Fading os Fadingf B N N f N    

 D m FadingB f N    1 1Fading FadingT f B N    

                                                               IFFT/FFT 
 
 

 
      1DN   1FadingN   

             2D m m Fading osN f f N N                                                         01 1 2 os mt B N f    

                                                          (c) Discrete-time oversampling 
Figure 3.3 Generation of Doppler spectrum. 

given by 2 /m os m Fadingf N f N  . The number of discrete-time frequency samples in the overall Doppler spectrum is given by 

/ (2 N )D m m Fading osN f f N   . This particular method allows for generating the fading signal with a given duration of FadingT  without 

taking the maximum Doppler frequency into account. Furthermore, it is advantageous for simulation since the time-domain signal 
can be obtained by interpolation with the maximum Doppler frequency mf .  

0

0
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Here, a magnitude of channel response can be computed from the Doppler spectrum with an arbitrary phase. A channel response of 
each path in the time domain is given as 

                                             
2 1

2

2

Fading
Fadingk

Fading

N
j nk Nj

k N
h n S k e e






                                                (3.1)                                     

where  S k  is the Doppler spectrum at a discrete frequency ,mk f f n t t     is the discrete time index, and   k  is a uniform 

random variable over   0,2 . 

According to the reports on channel measurements, the different channel environments are subject to the different Doppler 
spectrumand furthermore, the maximum Doppler frequency as well as Doppler spectrum may vary for each path. Figures 3.4(a) and 
(b) show two different paths, with the maximum Doppler frequency of 100 Hz and 10 Hz, respectively, which are generated by the 
modified frequency-domain and time-domain FWGN models with the Classical Doppler spectrum, respectively. 

 
(a) Modified frequency-domain FWGN model        (b) Modified time-domain FWGN model 

Figure 3.4 Generation of two different paths with FWGN channel model. 

3) Time-Domain FWGN Model: As shown in Figure 3.5, we can generate the fading channel by filtering the complex Gaussian 
random process with the time-domain filter whose frequency response corresponds to the Doppler spectrum. Due to the various 
advantages of the time-domain FWGN model, it is frequently employed in the commercial channel simulators. 

 
 
 
 
 Fading channel 
    
 

Figure 3.5 Time-domain FWGN model: an overview. 

As opposed to the frequency-domain FWGN model in which the duration of fading channel is determined by the IFFT size of 
FadingN  and the frequency-domain oversampling factor of  osN , it is determined by the length of the complex Gaussian random 

signal in the time-domain FWGN model. Since the simulation interval can be extended simply by increasing the number of complex 
Gaussian random samples subject to the Doppler filter, it is flexible for simulation [16]. 
The FWGN channel model allows for employing various other types of Doppler spectrum, including the flat Doppler spectrum and 
Laplacian Doppler spectrum. The flat Doppler spectrumhas the constant power spectral density function, i.e., 
                                                               1, mS f f f                                                          (3.2) 

Meanwhile, the Laplacian Doppler spectrum is defined by the following power spectrum density function: 

 
 

   1 1

2

1 2 2exp cos xp cos ,
1

m m m

m

S f f f e f f f f
f f

  
 

 
                       

                        (3.3) 

where s is the standard deviation of PAS, and f is the difference between direction of movement (DoM) and direction of arrival 
(DoA). Unlike the flat or classical Doppler spectrum model, the mobile direction can be accounted into the Laplacian Doppler 
spectrum. 

Complex 
Gaussian 
generator 

Doppler filter 
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B.  Jakes Model 
ARayleigh fading channel subject to agivenDoppler spectrumcan begenerated bysynthesizing the complex sinusoids. The number of 
sinusoids to add must be large enough to approximate the Rayleigh amplitude [24]. Figure 3.6  illustrates how the Jakes model is 
implemented. It has been assumed that all rays of the scattered components arriving in the uniform directions are approximated by N 
plane waves. Define  0 2 1 2N N  where 2N  is limited to an odd number. Let un denote an angle of arrival for the nth plane 

wave, which is modeled 02 ,n 1,2,......, Nn n N   . As shown in Figure 3.6, a sum of  0N  complex oscillator outputs with the 
frequencies of 0cos , 1,2,......,n d nw w n N  , each corresponding to different Doppler shifts, is added to the output of a complex 
oscillator with a frequency of 2d mw f .  
The real and imaginary parts,  1h t  and  Qh t , in the total sum of the complex oscillators can be represented respectively as 

                 
0

1
1

2 cos cos 2 cos cos
N

n n N d
n

h t w t w t 


                                                                  (3.3a) 

and 

                 
0

1
2 sin cos 2 sin cos

N

Q n n N d
n

h t w t w t 


                                                                  (3.3b) 

 
              0 0

2cos cosN Nw t  

   
                                                                   0 01 12cos cosN Nw t    

   
 
   Ih t  

                                                                      1 12cos cos w t  

 
                                                                                     2 cos cosN dw t                                    I Qh t h t h t   

 
             2 sin cosN dw t                

  
       1 12sin cos w t  

                                                                                                            Qh t  

 
         0 0

2sin cosN Nw t  

 0cos 2mf N N    cos 2 1mf N   mf  

Figure 3.6 Implementation of the Jakes model. 
 
where n   and N  are the initial phases of the n-th Doppler-shifted sinusoid and the maximum Doppler frequency mf , respectively. 
The number of the Doppler-shifted sinusoids, N0, must be large enough to approximate the amplitude of the fading channel with a 
Rayleigh distribution. It has been known that 0 8N   is large enough. Note that the following properties can be shown for Equation 
(3.3): 
 

                                                      
2 2

2
00 1 0

0 0 22 1 2 1
QE h tE h t EE E

N N

                             
                              (3.4) 

                                                                     2 2
0E h t E                                                   (3.5) 
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                                                                       0E h t E                                                    (3.6) 

                                                                    1 0QE h t h t                                                   (3.7) 

Equation (3.5) and Equation (3.6) confirm that the Jake model generates the fading signal with the average amplitude of 0E  and 

average energy of 2
0E . Furthermore, Equation (3.4) and Equation (3.7) show that the real and imaginary parts of the channel are 

statistically independent with the average power of  2
0 2E . 

 
Figure 3.7 Generation of a time-varying channel with Jakes model. (a) Time-domain channel characteristics (b) Distribution of 

magnitude (c) Distribution of phase  (d) Autocorrelation function  (e) Doppler spectrum 

C.  Ray-Based Channel Model 
A ray-based model is frequently used in modeling a MIMO channel, since it can take a spatiotemporal correlation into account [26]. 
However, it can be also used for a SISO channel. Its fundamental principle is described in this subsection while its extension to the 
MIMO channel . As in the Jake’s model, the ray-based model is given by a sum of the arriving plane waves. As shown in Figure 
3.8, it can model the plane waves incoming from an arbitrary direction around the mobile terminal, which can deal with the various 
scattering environments. In general, its power azimuth spectrum (PAS) is not uniform. Unlike the Jakes model, therefore, its 
Doppler spectrum is not given in the U-shape, but in various forms, depending on the scattering environments. 

 
Figure 3.8 Difference between Jakes model and ray-based model. 
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                                               Cluster n 
                                              Subpath m 
 , ,n m AoA  N  

                                                  , ,n m AoD  MS  V  V  

 N  , ,n m AoA  ,n AoA   

  MS                    ,n AoA  

 MS  
 , ,n m AoD   

 BS                           MS array broadside                     MS array  
                                                   BS array broadside                               MS direction of travel 

 
Figure 3.9  Ray-based MIMO channel model 

 
Figure 3.9  shows one of the Ray-based channel models, known as a spatial channel model (SCM) for a MIMO channel in 3GPP 
[28]. Let  , ,u s nh t  denote a channel impulse response of  the nth path (cluster) between the sth transmit antenna and uth receive 

antenna, which can be represented as [28] 
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u s n
m
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M G jkd V
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   

      
   

                     (3.8) 

where 
nP : power of the nth path 

SF : standard deviation of  log-normal shadowing 
M: the number of subrays per path 

, ,AoDn m : angle of departure of the mth subray for the nth path 

, ,AoAn m : angle of arrival (AoA) of the mth subray for the nth path 

,n m : random phase of the mth subray for the nth path 

 , ,BS n m AoDG  : BS antenna gain of each array element 

 , ,MS n m AoAG  : MS antenna gain of each array element 

k : wave number 2   where   is the carrier wavelength 

sd : distance between antenna element s and reference antenna element (s=1) in BS 

ud : distance between antenna element u and reference antenna element (u=1)in MS 
V : magnitude of  MS velocity vector 

v : angle of  MS velocity vector 
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Figure 3.10 Ray-Based Channel with Uniform Power Subray Method 

A uniform power subray-based channel model can be generated to get an angle spacing for equal power Laplacian PAS in 
SCM(spatial channel model), to assign the AoA/AoD offset tomean AoA/AoD, to generate DoAs at BS/MS and a randomphase at 
BS, and to combine the phases of M subrays to generate complex channel coefficients for each path, respectively 

D.  SUI Channel Model 
According to the IEEE 802.16d channel model , a suburban path  loss environment has been classified into three different terrain 
types, depending on the tree density and path-loss condition. The SUI (Stanford University Interim) channel model deals with the 
same environment as in the IEEE 802.16d channel model. Using the different combinations of  the channel parameters, it identifies 
six different channel  models that can describe the typical three terrain types in North America [9, 10] .The details of  the channel 
parameters for the different SUI models are summarized. Note that the different K-factors and st are set for the different antenna 
types, for example, directional or omni antennas [9, 10]. 
 

Terrain type SUI channels 

A SUI-5, SUI-6 
B SUI-3, SUI-4 
C SUI-1, SUI-2 

Table 3.1 SUI channel models for the different terrain types. 
 
In the SUI channel models, the Doppler power spectrum (PSD) is modeled as the following truncated form: 
 

                                          
2 4

0 0 0

0

1 1.72 0.785 , 1
0, 1

f f f
S f

f
      

  
                                        (3.9) 

where 0 mf f f  .  
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Figure 3.11 Channel characteristics for SUI-6 channel model. (a) Power delay profile (PDP)   (b) Time-domain channel 

characteristic (c) PSD: h1 (d) PSD: h2 (e) PSD: h3 
 

IV. CONCLUSION 
 In conclusion, it has been verified that the current channel model properly realizes the target channel characteristics. The 
contribution of this paper is an outdoor-to-indoor channel model fulfilling the requirements for simulations of mobile radio based 
positioning algorithms. The non-line-of-sight bias and the continuous evolution of multipath components with time are taken into 
account. A comparison of the channel model with the channel measurement data is performed by comparing statistics. 
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