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Abstract: The high torsional stiffness of box girders makes them popular in modern bridge structures. However, the thinness of 
their cross section predisposes them to a complex structural behaviour. All thin walled structures resist eccentric vertical load in 
bending action and torsion. The torsional component of the eccentric load gives rise to pure torsion (Saint Venant torsion), and 
warping torsion (distortion), in addition to flexure in the non-symmetric axis of the structure. A better understanding of the 
complex interactions between these strain modes, is necessary for predicting the behavior of such structures under generalized 
loading. This paper studied the interaction between the flexural and distortional strain modes of thin-walled mono-symmetric, 
composite and non-composite box girder sections using Vlasov’s theory of thin-walled structures. The stain mode diagrams for 
the study sections were drawn, and used to evaluate the Vlasov’s coefficients. The loading on the girders was computed using the 
British Standard Specification for Highway Bridge Live Loads (BS5400-2-2006). The general differential equations of 
equilibrium for flexural-distortional analysis of a mono-symmetric box girder sections were used to analyse and compare the 
flexural and distortional deformations of the composite and non-composite sections. The results show that the non-composite 
section is better in resisting flexural and distortional loads than the composite section.   
Keywords: Composite, Uniform, Distortion, flexure, thin walled box girder, Vlasov’s theory. 

I. INTRODUCTION 
A composite thin walled structure is one in which two or more materials are combined in a visible form, while a uniform structural 
system is homogenous in its material composition. Composites are primarily attractive because of their high strength-to-weight, and 
stiffness-to-weight ratios, [1]. Composite mono-symmetric box girders are increasingly being used in highway construction works, 
such as bridge of various types, grade separated intersections, etc. The arrangement of materials in a composite structure can appear 
in many forms, but this paper considered an arrangement whereby the top and bottom flanges are made of concrete while the webs 
are made of steel as shown in Fig.1(a). 

II. SECTION TRANSFORMATION IN COMPOSITE MEMBERS 
For compatibility in the concrete-steel girder, the flexural rigidity of the composite members will be equal. Considering a unit width 
of concrete (  and steel(  sections, thickness of concrete section (  = 200mm) and noting that the Young's modulus of grade 
42 concrete is 35kN/mm2, [2] while that of steel is 200kN/mm2, [3]. Then compatibility requires that rigidity of concrete and steel 
plates be equal and one can obtain the thickness of steel section ( ). Thus, 

  =                                                           ( 2.0) 

  =                                                       (2.1) 

                                                 

:.  = 112mm, assuming thickness of steel webs =112mm  

Fig.1a presents the composite study section, while  
Fig.1b presents the non-composite study section. 

  =     
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(a)Single cell composite box girder section   (b)Single cell uniform concrete box girder section 
Fig.1; Composite and non-composite box girder sections 

III. LITERATURE REVIEW 
Many researchers, [4], [5], [6], [7], and [8], undertook experimental and theoretical studies to better understand the shear behaviour 
of composite box girder structures. Based on the analysis carried out to date, it has been established that shear forces are mostly 
resisted by corrugated steel web. 
Gupta et al [9], used finite element formulations to study the behaviour of composite box girder bridge. They considered deflections, 
longitudinal and transverse bending stresses. Sayed  [10], studied the lateral torsional buckling of steel I-girder with corrugated steel 
web using numerical analysis. He compared his results with girder made with plane web.  
Some other literatures, [11], [12], and [13], on open and closed composite thin-walled beams, dealt with analytical formulations on 
the distribution of warping stresses and location of shear center of such complex structural system. Few others; [14], and [15], 
however centered on stability analysis of composite box girders using experimental and finite element formulations, considering 
initial imperfections and shear deformation of the composite box girder in their analysis. Osadebe and Chidolue  [16],[17], obtained 
fourth order differential equations of  torsional-distortional equilibrium, and flexural-distortional equilibrium for the analysis of 
mono-symmetric box girder structures using Vlasov theory with modification by Varbanov [18]. 
Through experimental and analytical means, various researchers have put forward various theories examining methods of analysis, 
both numerical and classical. Vlasov theory was however adjudged to contain all peculiarities of cross sectional deformations, such 
as warping, torsion, distortion, etc. and is therefore adopted in this work.         

IV. VLASOV’S STRESS-STRAIN RELATIONS 
The Vlasov’s stress-stain relation which forms the bases for the formulation of the governing equations of flexural-distortional 
equilibrium are shown below; 
Generally, strain is given by; 

 
Where,  elongation, l, is the original length, and . 
Let the elongation in the longitudinal and transverse direction of an infinitesimal length dx, be, ) and  respectively. 
From the theory of elasticity, the strains in the longitudinal and transverse directions are given by; 

     =          and  

     =                               (2) 

The expression for shear strain is  
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 (x,s) =   +                                               (3) 

And in series form we have, 
(x,s)    =   +                                                                      (4)                      

Using the above displacement fields and basic stress-stain relationships of the theory of elasticity, the expressions for normal and 
shear stresses become: 

=                                            (5) 

                               (6)                                 
Where, U(x) and V(x) are unknown functions governing the displacements in the longitudinal and transverse directions respectively. 

i(s) and k(s) are elementary displacements of the strip frame, respectively out of the plane (m displacement) and in the plane (n 
displacements). These displacements are chosen among all displacements possible, and are called the generalized strain co-ordinates 
of a strip frame.  
Transverse bending moment generated in the box structure due to distortion is given by  
M(x,s) =                                      (7)                                                    
Where (s) is the bending moment generated in the cross sectional frame due to a unit distortion,( V(x) = 1), [21]. 

V. FLEXURAL-DISTORTIONAL EQUILIBRIUM EQUATIONS. 
Osadebe and Chidolue [16],[17], derive the following equilibrium equations for flexural-distortional analysis of a mono-symmetric 
box girder section. 

                                                     
                                                            (8b)  

        (8c)                                                

. 

                                                                 (8d) 
Where aij, bij, cij, and rij are Vlasov’s coefficients, obtained by diagram multiplication of the strain modes diagrams, while shk is 
obtained by diagram multiplication of the distortional bending moment diagram. 

 =  =       

= =       

 =  =       

 =  =                       (9)   

 =∫ψk(s) (s)dA                                     
 =                                                    (10)  

Simplifying eqns.8, by elimination of U2 , U3 and their derivatives, we obtain; 

                             (11)                                                   

                                                                                          (12)                        
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Below are the expressions for the coefficients of the equilibrium equations (eqns. 11 and 12).  

=ka22                                                   (a) 

=ka23                                                   (b) 

=ka32                                                   (c) 

ka33                                                 (d) 

                    (e) 

                    (f) 

                       (g) 

(h) 

  

                                                                 (i)                                                                                                                    

                               (j) 

                              (k)         (13) 

Equations 11 and 12 are coupled with respect to V2 and V3, showing that there is interaction between minor axis flexural 
displacement, V2, and distortional displacement, V3, at the axis of un-symmetry. Hence the two equations can be solved 
simultaneously. Equations 11 and 12 are the differential equations of equilibrium for flexural-distortional analysis of a mono-
symmetric box girder section based on Vlasov’s theory. 

VI. STRAIN MODES DIAGRAMS FOR COMPUTATION OF VLASOV’S COEFFICIENTS. 
Figures 2a and 3a show the cross sections of the study profiles. Figs.2 (b to h) and Figs.3 (b to h) show the generalized strain modes 
diagrams for the composite and the uniform sections respectively. 

 (Fig 2c) is a property of the cross section obtained by plotting the displacement of the members of the cross section when the 
vertical (z-z) axis is rotated through a unit radian, similarly,  (Fig 2e) is a property of the cross section obtained by plotting the 
displacement of the members of the cross section when the horizontal (y-y) axis is rotated through a unit radian. The warping 
function (Fig 2g) of the box cross section is obtained as detailed in literatures: [21], [16], [17].   are in plane displacements 
of the cross section in x-z and x-y planes respectively. is the distortion diagram for the cross section which is obtained by 
differentiation of the warping function diagram, .  (Fig2b) is the displacement diagram for the box girder cross section when 
the frame is rotated one radian in say, a clockwise direction about the centroidal axis. Thus,  is directly proportional to the 
perpendicular distance (radius of rotation), from the centroidal axis to the members of the cross section. 
Osadebe and Chidolue [16]) showed that the in plane displacements of the cross section; are the same as the 
derivatives of their out of plane displacements. Consequently,  are obtained by numerical differentiation of 

and  diagrams respectively. 
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Fig.2: Generalized strain modes diagram for the composite section 

 

steel 
- 3000 

1500 7500 1500 

t=112 

t=200 

t=200 
3000 4500 3000 

1.020 

1.980 

2.900 2.900 

y 
 

 

 

 

ψ4 

(a) Single cell composite box girder section (b) Pure rotation diagram;  

+
 

- 

+ 

2 

+
 +

 

+
 

+ 

 

 =  

1.020 1.020 

1.980 1.980 

y y 

0.894 
0.894 

+
 

- 
- 

1.020 

1.980 

2 

3 

0 

4 

5 1 6 1 5 6 

4 3 

0 

© Longitudinal strain mode diagram (bending in y-y axis) 
(d)  Transverse strain mode in y-direction 

Z Z 

- 

y 
- 

- 

z 
(e) Longitudinal strain mode diagram (bending about z-z axis) (f) Transverse strain mode in z- direction 

y 

z 

5.250 

5.250 

2.250 2.250 

3.750 
3.750 

1.000 

0.447 

1.000 

0.447 
2 

2 1 
1 

0 0 

3 3 
4 

4 

5 5 6 
6 

  
+ 

+ 

+ 

+ 

+ 

- 

- 

- 

0 

 

0.371 

1 

(g) Warping function 
diagram 

(h) Distortion diagram 

y 

z z 

y 

0.050 

0.050 

0.099 

0.204 
0.204 

0.371 

0.091 

1 
0 

3 3 4 

4 

5 
5 

 
 

+ 

- 

- 

- - 

+ 

+ + 

- + 

+ - 

+
 

-
 

 

- 
- 

+ 

concrete 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 

                                                                                                                Volume 7 Issue VI, June 2019- Available at www.ijraset.com 
     

 
 

2456 ©IJRASET: All Rights are Reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: Generalized strain modes diagram for the uniform concrete section 
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VII. DISTORTIONAL BENDING MOMENT DIAGRAM, M(S); 
The distortional bending moment diagram was obtained from the warping function diagram, which was differentiated to obtain the 
distortion diagram shown in Fig.4a. In line with the directional movement of the plate elements in the distortion diagram, a base 
system for evaluation of distortional bending moment of the box frames were drawn. Fig.4b shows the base system for the 
composite section. A unit rotation,(  and  a  unit translation,(  are applied at the joints of the frame, the effects of 
which are summed up to obtain the distortional bending moment diagram according to eqn.(14) below, 

Mk(s +                                (14)    

Where and  are work done on the plates due to unit rotation and unit translation at the joints respectively, 
Rekach([21]. 
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Fig 5a:  Distortional bending moment diagram for the composite section. 

 

 

 

 

 

 

 

 

Fig 5b:  Distortional bending moment diagram for the uniform concrete section. 

A. The  coefficients, 
The coefficient  given by eqn.(14), depends on the bending deformation of the strip frame characterized by Mk ( for  k = 1, 2, 3, 
4 ). To compute the coefficient, the bending moment diagrams due to the strain modes , would be needed. 
Incidentally, strain modes  do not generate distortional bending moment, as they involve pure bending and pure 
rotation. Only strain mode  generates distortional bending moment which can be evaluated using the distortion diagram, 
Figs.2(h).  and 3(h).  The relevant expression for the coefficient is given by;  

=  =                                    (15)                                                                    

Where M3 is the distortional bending moment of the cross section obtained as described earlier. Having obtained the distortional 
bending moment, M3 ,the coefficient is obtained using the Mohr integral for displacement computation(diagram multiplication) 
of the bending moment diagram. 
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Table 1a: Summary of Vlasov’s coefficients for the        
composite section. 
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Table 1b: Summary of Vlasov’s coefficients for the 
uniform concrete section. 
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VIII. FLEXURAL-DISTORTIONAL ANALYSIS 
A 60m span simply supported box girder structure whose cross section are shown in Fig.1(a) and 1(b) were considered. The loading 
was evaluated according to British specification for highway bridge live loads (BS5400-2-2006). The flexural and distortional 
components of the applied torsional load were computed according to BS5400-2-2006. Values obtained are, 

 Where  and  are flexural and distortional components of the  external work done on plate 
elements respectively. The governing equations for flexural-distortional analysis of single cell mono-symmetric box girder are given 
by eqns. (11) and (12). 
Boundary conditions; For a simply supported box girder, we have the following boundary conditions; V2(0) = 0,  (0) = 0, V2(L) = 
0 

 (L) = 0, V3 (0) = 0,  (0) = 0, V3(L) = 0, (L) =0 
The relevant Vlasov coefficients obtained for the composite and non-composite sections are given in table 1(a and a); 
Taking, Es = 200x109N/m2, Ec = 24x109N/m2, Gs=80x109N/m2   and Gc=9.6x109N/m2,    

k= , Substituting the Vlasov’s coefficients into eqns.13(a-k), we  obtain the 

coefficients of the governing differential equation summarized in table 2 for composite and uniform sections; 

Table 2: Coefficients of the governing differential equation. 
Coefficients  Composite 

concrete steel 
section  

Uniform 
concrete 
section  

 414.238 414.238 

 -3.118 -0.005 

 -3.118 -0.005 

 8.663 24.768 

 5.558 x10-4 -1.193 x 10-4 

 7.281 x10-5 3.343 x 10-5 

 -4.342 x 10-5 -1.588 x 10-5 

K1 -6.044x 10-7 -1.844 x10-7 

K2  - 6.150 x 10-7 -1.829 x 10-7 

K3 1.180 x 10-5 3.141 x 10-6 

K4   -1.852 x 10-6 -4.955x10-6 

Substituting these coefficients into the governing eqns. (11) and (12), we obtain for the composite section; 
414.238                                                       (16a)   

    and               
 8.663  7.281 10-5  4.342 x10-5V3 = 1.85 x 10-6                                                               (16b) 

Solving eqns.16 (a & b) simultaneously by method of Fourier sine series and applying the boundary conditions, we obtain, 
V2 (x) = 4.520 x 10-3                                    (17a) 
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V3 (x) = 9.110 x 10-2                                    (17b) 

For the non-composite section, we have, 
 V2 (x) = 1.0120 x 10-3                     (18a) 

V3 (x) = 24.50 x 10-2                                    (18b)     

IX. DISCUSSION OF RESULTS 
The solution to the flexural- distortional equations of equilibrium for the composite section (eqns. 16a and 16b) is given by the 
expressions 17a and 17b. similarly the solution to the flexural- distortional equations of equilibrium for the non-composite section is 
given by the expressions 18a and 18b. They express the deformations of the 60m span simply supported study models. 
Fig. 6 shows the variation of flexural displacement along the lengths of the composite and non-composite box girder sections, while 
Fig 7 presents the variation of distortional displacement along the lengths of the same sections.  
The maximum (mid span) flexural displacements for the box girder sections are 4.52mm for the composite and 1.012mm for the 
non-composite section, while the maximum (mid span) distortional displacements are 91.1mm for the composite section and 
24.500mm for the non-composite. From the results, the maximum flexural displacement for the composite section is 77.6% more 
than the maximum flexural displacement for the non-composite section. It also has 73.1% more distortional displacement when 
compared to the non-composite section. The results revealed that the non-composite section has a better flexural and distortional 
capacity than the composite section. Generally, it can be concluded that combining concrete and steel in a composite action in the 
arrangement shown in Fig.1a, does not enhance the flexural-distortional capacity of a box girder section, even though savings in 
weight and hence foundation cost can be achieved. That may explain why the use of composite (concrete-steel) box girder bridge is 
not a common practice, as reinforced concrete box girder bridge predominates. 

 
Distance along the length of girder (m)  

Fig. 6: Variation of flexural deformation along the length of the girder sections 
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Fig. 7: Variation of distortional deformation along the length of the girder sections 
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X.  CONCLUSION 
Equations (11) and (12) are the governing differential equations of equilibrium for flexural-distortional analyses of a mono-
symmetric box girder section, while expressions 17(a and b) and 18(a and b) are the solutions to the governing equations for the 
composite and the non-composite sections respectively. The study shows that the non-composite section has the capacity to resist 
flexural and distortional deformations more than the composite section in the arrangement considered, i.e. the top and bottom 
flanges made of concrete and the webs made of steel. 
It therefore follows that savings in the weight of materials and hence the cost of foundation in composite section, results to loss of 
flexural and distortional stabilities. 
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