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Abstract: This work focuses on the sub-Cauchy problem for linear elasticity in two dimentional case. Solving such a problem 
may be formulated as follows: given the displacement and one component of the traction in a given part of the boundary of the 
elastic body, reconstruct the displacement field in all the domain. Author propose herein, an iterative method borrowed from the 
domain decomposition communauty to solve the sub-Cauchy problem. Numerical results highlight the efficiency of the proposed 
method. 
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I. INTRODUCTION 
Many inverse problems in linear elasticity are defined by overdetermined boundary conditions. One can think to the reconstruction 
of buried flaws such as cracks, voids or inhomogeneities, identification of constitutive law, data completion (that is the recovery of 
boundary conditions on an inaccessible part of the body boundary) [1].All the above inverse problems have in common to be 
defined by overspecified boundary conditions namely the normal stress and the displacement on a part of the boundary which 
correspond to Cauchy data. Many papers treated this problem, from the numerical view point, this last decade [2-4]. 
Author would like to mention the work by Bourgeois [5] who applied the Lions-quasi-reversibility method to the data completion. 
This method leads to a direct inversion process. 
Many authors resort to iterative methods based on minimising a least-square type error functional, [6-8]. Marin [9] would like to 
mention the minimization of an energy-like gap functional in ref. [10] and domain decomposition like method in ref. [11] which are 
close to what we develop in this work. 
Hereafter, Author are concerned by a partially overdetermined boundary conditions. In fact,on a part of the boundary of the domain 
partially overdetermined boundary data are prescribed, namely one component of the traction and the displacement field. Following 
ref. [12] author build an energy-gap error functional to recover the lacking boundary data. Author emphasise on the shear stress 
reconstruction, on the part of boundary where the partial-data is prescribed. 

II. FORMULATION OF SUB-CAUCHY PROBLEM AS STEKLOV POINCARE OPERATOR 
The inverse problem under consideration concerns the recovery of lacking boundary data from the knowledge of partially 

overdetermined boundary elastic data. The problem is formulated mathematically as follows : Let Ω be a bounded domain in , 

the boundary Γ=∂Ω is split into Γcand Γi having both non vanishing measure . Given the displacement U and the normal 
component of surface traction Φ.n on Γc: 

   (1) 

where σ = λTrε(u)+2με (u), ε =1/2(∇u+∇uT) and λ, μ are the Lamé coefficients related to Young’s modulus E and the Poisson 
ratio v via: 
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Our aim is then to reconstruct (σ (u).n).τ on Γc and both the displacement and traction. To our knowledge, there are no theoretical 
studies (existence and uniqueness) of this problem despite its great importance in applications. In this paper author treat this 
problem numerically by solving a data completion problem. 

The decomposition of the Cauchy problem (1) is formulated through an unknown function η as follows: 

   (2) 

Where η is the virtual control and u is chosen so that uD and uN adjust in the best possible on Ω. The solution uD and uN are a 

function of η (  and ). 

To express the problem in the framework of virtual control, we introduce the cost functional: 

    (3) 

and consider the minimization problem: 

      (4) 

The solutions uD and uN can be written as: 

 

Where ui
0 depends on the data U and Φ.n where as ui

* depends on η as follows: 

   (5) 

Similary, author decompose uN. 

  (6) 

The solution of the problem (4) is recovered if: 

     (7) 
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With this partition, condition 7 leads to the boundary equation 

    (8) 

Author introduce the Steklov Poincaré operator 

 

Author define  and . 

Author can write the equation (8) according to the Steklov Poincaré operator: 

 

where  

This operator, borrowed from the domain decomposition community, is widely used in ref. [13]. 
There are several ways to solve this linear system of equations. Here author use an iterative preconditioned gradient algorithm, 
which appears to be very efficient. Each iteration of the algorithm is written 

 

where ρ is a relaxation coefficient and SD is the preconditioning operator. 

Thus each iteration requires to compute Sη by solving the two problems ?? and to solve the system SDχ = Sη . This is achieved by 
solving the following problem: 

   (9) 

where χ = w on Γi. 

Now, author propose an algorithm to approximately solve the sub- Cauchy problem: 

Algorithm 

1. Choose arbitrary η 
2. Solve problems (PD) and (PN). 
3. solve problem (9). 
4. Let η= η+ρ w 
5. Go back to the first step until the stopping criteria ||uD – uN || ≤ ε is reached. (ε is a given tolerance level) 

III. NUMERICAL RESULTS AND DISCUSSION 
The purpose of this section is to present the numerical implementation of the boundary data recovery process described above. 
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The numerical implementation is run under FreeFem software [14] based on Finite Element Method. All through this section, author 
consider an isotropic linear elastic material (Steel XC10 to 20° temperature) characterised by the poisson coefficient ν= 0.29 and 
Young’s modulus E = 216 GPa. 

Author are concerned by a two dimentional framework corresponding to a square hole domain. 

The partially overspecified boundary data is a synthetic one, obtained through the resolution of the following forward problem: 

 

where , z = x + iy , a =1.8 ,  and  being the inner circle. 

Notice that we are dealing with a “rough” case, insofar as, the inffered data, are induced by a “near singular” data. The trials used in 
the litterature come usually from analytical reference solutions. 

A. Preliminary Numerical Test 
Our trial concerns the resolution of the sub-Cauchy problem in the following context: We consider a square hole domain: rectangle 
size: (10 * 20) with inner circle of radius R=2. The internal circle plays the role of the boundary Γi and the Cauchy data are donated 
in the external boundary Γc. 
Author choose ε = 10-2 in the stopping criteria computation are carried out with “un-noisy” data. Figures 1-3 show the reconstructed 
displacement and traction on the inner boundary, whereas Figure 4 illustrate the reconstruction of the shear stress in Γc. Note that 
the reconstruction is quite nice in Γi and in good agreement with exact for the shear stress. 

B. Sensitivity to the Thickness 
The following numerical trials are devoted to the influence of the radius of the hole on the reconstructed data. The results are 
summerrized. As expected the computed sub-Cauchy problem solution is better when the distance between Γc and Γi is lower. To 
confirm the results, Figure 5 where author present the result for the first component of displacement on Γi 
The same remark is true when we zoom on the shear stress. 

C. Extended Domain 
The following numerical experiments are inspired by Hecht [14]. In ref. [14], the authors resort to un extended domain method to 
illustrate its regularisation effect on their numerical data completion procedure. Their study was conducted in the framework 
of Laplace equation. To our opinion, the proposed method may be used in many practical situations, one can think to the data 
completion on rough boundary in this situation it is worthfull to extend the domain to a smooth one and to deduce the boundary 
conditions on the rough boundary.This trick will avoid the meshing difficulties for instance.  
Another possible application may concern a void detection: If one has an apriori knowledge on the void location, the computation 
may be done on an extended domain, the void being detected by level lines of the displacement field [15] (for the Laplace equation). 
Our concern here is to illustrate the deblurring effect of this domain extension procedure. 
Of course, it currently happens in practice that the data (on Γc) suffer from erroneous measurements, the following numerical 
experiments illustrates the deblurring effect of the extended domain method. 

We consider a random noise of 4% added to the exact data as follows: 
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where (α , β ) denotes the noise level relative to (  , ), and r is a random function generated by Freefem. 
The boundary Γi is very close to the complete boundary and is then exposed to the noise contamination coming from Γc .The 
possibility of extending domain by a fictitious incomplete bounday can correct this contamination. 
The exact domain is defined square by rectangle size (10 * 20) with hole of radius R=6 while the extended field is defined by the 
same rectangle, but with a hole of radius R=4. 
Figures 6 and 7 show the reconstructed displacement for the exact and extended domain. Note that the solution computed in the real 
domain suffers from hard oscillations. Those obtained in the extended domain seem satisfactory. 

IV. CONCLUSION 
In this work the reconstruction of lacking boundary data on a part of the boundary of a body from partially-overspecified boundary 
conditions on another part has been investigated numerically. A domain decomposition like method has been given to describe the 
reconstruction process. The numerical investigation has been conducted on a “rough” configuration (i.e. the data to be recovered is 
not extendable on a divergence free stress field outside the domain namely within the hole), it uses FEM. The numerical section 
highlights the accuracy of the inverse procedure, as well as the robustness of the inversion process to noisy data as well as its 
ability to deblur noise. 
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